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Abstract

There is a theorem (No Free Lunch) that tells us that no universal learner exists. In other
words, there is no algorithm or learning scheme that can perform arbitrarily well on any
learning task. In order to learn, then, we as scientists must induce some sort of bias into the
model. For example, if one suspects a linear relationship in their data, they can bias their
model toward linear functions. The same principle applies if one expects a polynomial rela-
tionship.

A related idea to No Free Lunch is the Bias-Variance Tradeoff. In essence, the more ex-
pressive one’s model is, the more often it could potentially be wrong—leading to more
variability in accuracy. Conversely, if one has introduced extreme bias into their model,
the variability of their model’s accuracy will be minimal—which is desirable if and only if
the model accuracy is high. For instance, if the data has a polynomial relationship and the
model is using a linear predictor, the variability in the model’s accuracy will probably be
low, but the accuracy will also be poor.

In this work, we aim to provide progress towards an answer to the question, “Howmuch
bias is enough? How far can we push the bias-variance tradeoff before our accuracy is too
variable?”

In practice, the bias one would induce into a model is just specialized domain knowledge,
and acquiring that knowledge may be expensive or even impossible. Thus, it is helpful if
we can guarantee a reliable model with as little apriori knowledge as possible. For instance,
in binary classification if we know our data is linearly separable, that alone is enough to
achieve good results. This work examines how we can achieve analogous results in the case
of nonlinearly separable data.

Our results are comprised of numerous experiments that examine the importance of
bias in machine learning. One of the major themes of these experiments is structure. In
particular, we partitioned nonlinear classification inR2 into several different categories so
as to exploit the inherent structure of different kinds of data sets. In the future we hope to
provide theoretical guarantees to accompany our empirical findings.
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HowToRead This Thesis

We assume some familiarity with a variety of different mathematical disciplines. Most
prominently, comfort with probability and set theory is a necessity. Some exposure to anal-
ysis and topology would not hurt, but is not necessary. As for the skeleton of the thesis, we
provide the following outline.

• Chapter 1 provides the learning theoretic ideas such as PAC learning, No Free Lunch,
and VC dimension necessary for a discussion of bias in the field of machine learning.
This chapter is long and difficult, but we urge the reader to understand hypothesis
classes (Definition 1.4), the definitions surrounding probably approximately correct
learning (especially Definition 1.11 and Definition 1.12), and empirical risk mini-
mization Definition 1.8 at a minimum.

• Chapter 2 introduces the importance of structure. In short, linear data is not easy
to learn because it is linear, but because we are assuming it is linear and that our as-
sumption holds. If we make assumptions about the structure of nonlinear data and
those assumptions hold, nonlinear classification is not all that different from linear
classification.

• The most important ideas in Chapter 2 are contained in Section 2.2 where we dis-
cuss loops. Loops are so essential to our work that we dedicate an entire chapter to
them in Chapter 3. In Chapter 3 we discuss different kinds of loops and how cer-
tain assumptions about data labeled by loops represents stronger or weaker apriori
knowledge of the dataset.

• In Chapter 4 we explain in detail the experiments we will conduct to examine the
ideas discussed in Chapter 3.

• Finally, in Chapter 5 we analyze the results of our experiments from Chapter 4.
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A Remark About Figures

Some of our figures will probably be comically large on a printed copy. It was not clear to
us how large figures needed to be in order to be pleasantly legible. Consequently, we gen-
erally made figures much larger than they may need to be. Additionally, the use of color is
quite important in our plots as we make use of heat maps to examine variability. In an ini-
tial print, we found that some of the finer details of some heat maps were not captured by
the printer. Tom will have an electronic copy of this work, should the committee need it.

Acronyms

Wemake use of several acronyms that we summarize here for the convenience of the reader.

• ERM: Empirical Risk Minimization. ERM is what models use to learn.

• PAC: Probably Approximately Correct. PAC is an uncertainty quantification.

• NFL: No Free Lunch. This refers to an important theorem about the nonexistence
of a universal learner.

• VC: VC is shorthand Vapnik and Chervonenkis, the names of two contributors to
the VC dimesnion, a major idea in learning theory.

• FTL: Fundamental Theorem of Learning. FTL states that a finite VC dimension is
equivalent to learnability.
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It is an error to believe that rigor is the enemy of simplic-
ity. On the contrary, we find it confirmed by numerous
examples that the rigorous method is at the same time the
simpler and the more easily comprehended.

David Hilbert

1
Learning Theory Fundamentals

In what follows we will summarize major concepts from Valiant’s celebrated probably ap-
proximately correct (PAC) framework13 and important theoretical extensions like the No
Free Lunch Theorem15 and Vapnik–Chervonenkis (VC) theory14. We believe it is to the
reader’s benefit to try to understand proofs of these fundamental results. To that end, we
have made efforts to adapt proofs from graduate texts/notes10,11,9 and provide extra com-
mentary on details conventionally left to the reader.

1.1 PAC Learning

The goal of the PAC learning framework is to quantify uncertainty via two parameters, a
confidence choice and an error tolerance. In simple terms, the results surrounding PAC
learning determine the conditions necessary in order to achieve a learner that is “mostly
correct most of the time.”

1.1.1 The Learner’s Input andOutput

Definition 1.1 The learner’s input, denoted by S, is a finite sequence of n training pairs
{(xi, yi)}ni=1 fromX × Y whereX is the domain in which our data exists andY is the set of
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all possible labels an element inX could be assigned to.

We call S a sequence, not a set, because the order in which a learner receives data could
be important. Notice also that we have intentionally not specified the structure ofX and
Y . The setsX andY will change given the nature of the learning task. For much of this
document,X will beR2 andY will be the set of binary labels {0, 1}, butX will change
when we discuss higher dimensions and Y will change when we discuss multiclass classifica-
tion.

Definition 1.2 The output of a learner is a function h : X → Y . We call h a hypothesis,
predictor, or classifier, as it is the function we use to make conclusions about unseen data.

The reader may wonder why we call the output function h, instead of f . We reserve f
for what is called the “true labeling function”.

Definition 1.3 The function f : X → Y is responsible for the true labels of our data. That
is, f is the unknown function that always satisfies f(xi) = yi when instances are labeled
deterministically 1.

The informal goal of a learner is to return a hypothesis that is “as similar to f as possible.”
The learner achieves this goal in part by searching through what is called a hypothesis class.

Definition 1.4 The set of all functions a learning model can output is called a hypothesis
class, and is denoted byH.

Observe that the choice of hypothesis class has serious ramifications on the learner’s per-
formance. In particular, if f is not included inH—which is entirely within reason if we
do not have highly specialized domain knowledge prior to learning—then it may not be
possible to perfectly label all instances.

1In this work, we will assume labels are always deterministic, but know that that is not always the case.
Noisy data, for instance, can be interpreted as data that is labeled stochastically.
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1.1.2 The Risk of the Learner

In order for a learner to learn, it must have a method of assessing the quality of a hypothesis
and its ability to predict or classify something. We assess a single instance with what is called
a loss function.

Definition 1.5 Given a hypothesis classH and a learning space2 Z = X × Y , we define a
loss function ℓ to be any function mapping pairs (h, z) to a nonnegative real number:

ℓ : H×Z → R+.

Different learning tasks have different loss functions. For our work, the only loss func-
tion of importance is the 0, 1 loss:

ℓ0,1(h, (x, y)) =

0 if h(x) = y

1 if h(x) ̸= y.

The 0, 1 loss simply tracks whether a single instance is labeled correctly. Since loss func-
tions only assess a single instance, they alone are not sufficient in assessing the error of a
hypothesis as a whole. For a general assessment of a hypothesis, we define the notion of risk.

Definition 1.6 The true risk incurred by a hypothesis h is defined to be the expected loss of h
with respect to a joint probability distributionD overZ = X × Y :

LD(h) = E
z∼D

[ℓ(h, z)].

The true risk is what we as theorists use to make arguments about learning schemes, but
it is not actually useful in practice because we will never know the distributionD. Since we
cannot compute the true risk, we define the empirical risk via the empirical expectation.

2The reader may be curious as to whether there is any significance to denoting the learning space asZ in-
stead of justX ×Y . The main reason for this is brevity. We will be referring to the learning space frequently
throughout the document and notation can sometimes get quite cluttered if we write outX ×Y instead of
Z or (x, y) instead of z. Ultimately, though, the reader should be comfortable with either notation as they
are equivalent.
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Definition 1.7 The empirical risk incurred by a hypothesis h is defined to be the expected
loss over the sample S:

LS(h) =
1

n

n∑
i=1

ℓ(h, zi).

Observe that risk with the respect to the 0, 1 loss is interpreted as the probability of mis-
labeling an instance. That is, in the discrete expectation

E
z∼D

[ℓ(h, z)] =
∑
z∈Z

ℓ0,1(h, z)P(Z = z),

a correctly classified instance receives zero weight in the sum whereas an incorrectly classi-
fied instance is weighted by its probability of being sampled. Similar statements apply for a
continuous distribution.

1.1.3 Empirical RiskMinimization

Recall that we (informally) introduced learning as a search for a function that is “similar” to
some true labeling function f . The formal goal of learning is to minimize LD(h), the true
risk of a hypothesis with respect to a distributionD and learning spaceZ . Since we cannot
compute the true risk directly, the next best attempt of risk minimization is to minimize
empirical risk.

Definition 1.8 A hypothesis that minimizes empirical risk with respect to a training se-
quence S is denoted hS . Formally, hS is given by

hs ∈ argmin
h∈H

LS(h).

Empirical risk minimization (ERM) is an effective technique for minimizing true risk
under certain conditions, but it is also subject to failure if we are not careful. Consider a
hypothesis hbad that memorizes the training data:

hbad(xi) =

yi if xi ∈ S

0 otherwise.
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There are several problems with hbad even though hbad achieves zero empirical risk.
First, the probability that hbad misclassifies an instance is equal to the probability of sam-
pling a positively3 labeled instance that we have not seen before. This probability could be
high, which would lead to very poor generalization4. Moreover, imagine that our learner
is attmepting to learn to classify security threats, where a positive instance denotes, “yes,
this is a threat.” In such a scenario, hbad will never identify an unseen threat, rendering the
learning of hbad pointless. In short, hbad drastically overfits to the training data.

1.1.4 Avoiding Overfitting

Overfitting can be avoided with the appropriate use of bias. If we have some domain spe-
cific knowledge, we may suspect what the optimal hypothesis may be. In such a case, we
may want to bias our learner by choosing a hypothesis class that represents our prior knowl-
edge/beliefs. Meaning, we should restrict the hypothesis classH. If, for example, we sus-
pect there is a linear relationship betweenX andY , we could restrictH to some set of lin-
ear functions to avoid a polynomial overfit (Fig. 1.1).

Figure 1.1: Polynomial Overfits Data

We could also restrictH by forcing it to be finite (or if it already is finite, to be smaller
than it was before).

3Wewill interchange “labeled as 1” with “positively labeled” throughout. Admittedly, this is a bit con-
fusing because zero is not negative in the mathematical sense. Note, though, that when we say positive and
negative, we are really referring to more general notions of yes/no or good/bad.

4Generalization is another way of describing the learner’s performance. If the learner has high risk, it does
not generalize well to unseen data.
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1.1.5 Realizable Learning

PAC learning is founded upon the characterization of generalization via a confidence pa-
rameter δ and an error tolerance ϵ. For an example, suppose our choices were ϵ = δ = 0.1.
A learner would then be a realizable PAC learner if it labeled 90% of instances correctly
90% of the time after running ERM on sufficiently many samples. The problem with re-
alizable PAC learning is that it is not always possible with a reasonable choice ofH. Realiz-
able PAC learning requires the realizability assumption—a very bold assumption—to hold.

Definition 1.9 The realizability assumption assumes the existence of a hypothesis h∗ ∈ H
for whichLD(h

∗) = 0 with respect to the 0, 1 loss. In other words, the probability of sampling
an instance mislabeled by h∗ is zero.

While this may be a dubious assumption, it is still worth consideration as realizable PAC
learning allows for desirable theoretical guarantees. Namely, if realizability holds for a finite
hypothesis class, we can guarantee arbitrarily low error with a sufficiently large sample. To
prove this, we first require a formal definition of PAC learnability and sample complexity.

Definition 1.10 The sample complexity of a hypothesis class, denoted nH, is a function of
ϵ, δ that denotes the minimal number of instances needed in a sample to PAC learn overH.

To (realizably) PAC learn overH is to satisfy the following definition.

Definition 1.11 A hypothesis classH is realizably PAC learnable if there exists a function
nH : (0, 1)2 → N and a learning algorithmA with the following property:

For every choice of ϵ, δ ∈ (0, 1) and for everyD overZ = X × Y , if the realizability
assumption holds with respect toH andD, then when runningA on n ≥ nH(ϵ, δ) examples
generated byD,A returns an h that satisfiesLD(h) ≤ ϵ.

Note that realizable learning is restricted to the 0, 1 loss, but again, that is the only loss
we will consider in this work. We now prove that finite hypothesis classes are realizably
learnable.
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Proposition 1.1 IfH is a finite, realizable hypothesis class, thenH is realizably PAC
learnable via ERM and has sample complexity

nH(ϵ, δ) ≤
⌈
ln(|H|/δ)

ϵ

⌉
.

Proof. First, let us outline the core of our argument. Since realizability holds, there is an
h∗ ∈ H for which LD(h

∗) = 0.Hence, with probability 1, ERMwill find at least one
hypothesis with zero empirical risk on any sample we draw. The question of importance is
whether zero empirical risk implies low true risk. If h∗ is the only hypothesis with zero
empirical risk, then clearly, ERMwill always pick h∗ and low risk is achieved. Assume, then,
that there exist multiple hypotheses with zero empirical risk and that some of them have
low true risk and some do not.

If we can bound the probability of drawing a sample with zero empirical risk and high true
risk to be at most δ, then by complementation, the probability of a good sample (zero
empirical risk and low true risk) is at least 1− δ. To achieve our bound, we formalize our
argument by defining two sets

Hbad = {h ∈ H : LD(h) > ϵ}

and
Sbad = {S ∈ (X × Y)n : ∃h ∈ Hbad for which LS(h) = 0} .

The setHbad is the set of hypotheses which violate our error tolerance and Sbad is the set of
samples with n instances for which empirical risk is zero and true risk is poor. Our goal is to
bound the probability of drawing sample from Sbad. Observe that we can write Sbad as a
union over the h inHbad:

Sbad =
⋃

h∈Hbad

{S ∈ (X × Y)n : LS(h) = 0} .
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Now let S ∼ Dn denote the IID sampling of n instances fromD and then we have

P
S∼Dn

[S ∈ Sbad] = P
S∼Dn

[ ⋃
h∈Hbad

{S ∈ (X × Y)n : LS(h) = 0}

]
(1.1)

≤
∑

h∈Hbad

P
S∼Dn

[LS(h) = 0] (1.2)

=
∑

h∈Hbad

n∏
i=1

P
x∼D

[h(xi) = f(xi)] (1.3)

≤
∑

h∈Hbad

n∏
i=1

(1− ϵ) (1.4)

≤ |H|(1− ϵ)n. (1.5)

For clarity, we provide some additional explanation. Eq. (1.2) follows from the
inclusion-exclusion bound. That is, for two setsA,B, we have

P(A ∪B) = P(A) + P(B)− P(A ∩B)

which implies P(A ∪B) ≤ P(A) + P(B). A similar argument holds for more than two
sets. The step from Eq. (1.2) to Eq. (1.3) follows from IID sampling and the fact that zero
empirical risk happens if and only if h(x) = f(x) for all x in the sample. Since each
hypothesis we are considering is a bad hypothesis, the risk of h is greater than ϵ. Recall that
risk with respect to the 0, 1 loss is simply the probability of misclassifying an instance and
therefore, Eq. (1.4) follows from complementary probability. Lastly, Eq. (1.5) follows from
the fact that |Hbad| ≤ |H|. To conclude the proof, we use the fact that 1− ϵ ≤ e−ϵ to
write

P
S∼Dn

[S ∈ Sbad] ≤ |H|(1− ϵ)n ≤ |H|e−ϵn

and then we pick an n such that δ ≥ |H|e−ϵn.Rearranging yields

ϵn ≥ ln(|H|/δ) ⇒ n ≥
⌈
ln(|H|/δ)

ϵ

⌉
.
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We have now shown that that if we use
⌈
ln(|H|/δ)

ϵ

⌉
or more samples when running ERM,

the probability of obtaining a sample with zero empirical risk and poor true risk is at most δ.
Now, notice that a sample cannot have low and high true risk at the same time. Thus, the
probability of obtaining a sample with zero risk and low true risk is at least 1− δ, and
therefore,H is PAC learnable with a minimum number of samples

nH(ϵ, δ) ≤
⌈
ln(|H|/δ)

ϵ

⌉
.

□

1.1.6 Agnostic Learning

If realizability does not hold, we cannot guarantee that there always exists a hypothesis in
H that achieves zero risk. Learning without the realizability assumption is called agnostic
learning, and requires a slight modification of our perspective on what it means to success-
fully learn.

Definition 1.12 A hypothesis classH is agnostically5 PAC learnable with respect to learning
spaceZ and loss function ℓ : H×Z → R+ if there exists a function nH : (0, 1)2 → N and
a learning algorithm with the following property:

For every choice of ϵ, δ ∈ (0, 1) and for every distributionD overZ , when running a
learning algorithmA on n ≥ nH(ϵ, δ) IID instances sampled fromD, the algorithmA
returns an h ∈ H such that with probability at least 1− δ

LD(h) ≤ min
h′∈H

LD(h
′) + ϵ.

Just as we proved finite hypothesis classes are realizably learnable, we can prove finite
classes are agnostically learnable. We will, however, require a few additional ideas. Namely,
we need to discuss what it means for a sample to be ϵ representative and how ϵ representa-
tive samples relate to a property called uniform convergence.

5Notice that if realizability holds, agnostic learning and realizable learning are equivalent because
min
h′∈H

LD(h
′) = 0 in the realizable setting.
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Definition 1.13 A training sequence S from a learning spaceZ and distributionD is
called ϵ-representative if for all h ∈ H,

|LS(h)− LD(h)| ≤ ϵ

holds with respect toZ andD.

Intuitively, an ϵ representative sample is a sample that is “informative enough” to make
the empirical risk and the true risk roughly equivalent. While this does not necessarily mean
our sample is large, the most generic way to achieve an ϵ representative sample is to make
the sample as large as possible. We now show that obtaining an ϵ representative sample is
sufficient for agnostic learning.

Lemma 1.1 If a sample S is ϵ/2 representative with respect to a learning spaceZ , hypothesis
classH, loss function ℓ, and distributionD, then any ERM hypothesis hS satisfies

LD(hS) ≤ min
h∈H

LD(h) + ϵ.

Proof. Assume S is ϵ/2 representative. We can then write

|LD(hS)− LS(hS)| ≤
ϵ

2
.

When we drop the absolute value, we obtain

LD(hS) ≤ LS(hS) +
ϵ

2
.

Since hS is an ERM hypotehsis, Definition 1.8 implies

LS(hS) +
ϵ

2
≤ LS(h) +

ϵ

2

for any h ∈ H. Further, since S is ϵ/2 representative, we have

|LD(h)− LS(h)| = |LS(h)− LD(h)| ≤
ϵ

2
(1.6)

Combining Eq. (1.6) with all that precedes it yields
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LD(hS) ≤ LS(hS) +
ϵ

2
≤ LS(h) +

ϵ

2
≤ LD(h) +

ϵ

2
+

ϵ

2
= LD(h) + ϵ

for all h ∈ H. To conclude the proof, observe that since the above holds over all h, we have
LD(hS) ≤ min

h∈H
LD(h) + ϵ, so indeed, if S is ϵ/2 representative, then agnostic learning is

achieved with ERM.

□

We now need to determine how to ensure a sample is ϵ representative. Formally, we need
to prove that we can achieve the uniform convergence property.

Definition 1.14 We say that a hypothesis classH has the uniform convergence property
with respect to a learning spaceZ and a loss function ℓ if there exists a function
nUC
H : (0, 1)2 → N such that for every ϵ, δ ∈ (0, 1) and for every distributionD overZ , if S

is a sample of n ≥ nUC
H (ϵ, δ) examples drawn IID according toD, then, with probability

1− δ, the sequence S is ϵ representative.

To prove that a sample enjoys the uniform convergence property, we make use of a con-
centration inequality calledHoeffding’s Inequality.

Theorem 1.1 Let θ1, . . . , θn be a sequence of IID random variables such thatE[θi] = µ

and P[a ≤ θi ≤ b] = 1. That is, all random variables are bounded. Then, for any ϵ > 0,

P

[∣∣∣∣∣ 1n
n∑

i=1

θi − µ

∣∣∣∣∣ > ϵ

]
≤ 2 exp

(
−2nϵ2

(b− a)2

)
.

Before we begin a proof, let us draw some parallels between Hoeffding’s Inequality and
the notions of risk we are already familiar with. In particular, notice that our loss function
is a random variable due to the fact that instances z = (x, y) are drawn randomly with
IID sampling. Moroever, the notions of risk are empirical and theoretical expectations with
respect to the loss, just as

1

n

n∑
i=1

θi and µ
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are to θi. Thus, Hoeffding’s Inequality tells us that, for some fixed h,

P [|LS(h)− LD(h)| > ϵ] ≤ 2 exp

(
−2nϵ2

(b− a)2

)
(1.7)

when the loss function ℓ is bounded. Certainly, we need to consider more than just a
single fixed hypothesis, but Eq. (1.7) paves the path to do so.

Theorem 1.2 IfH is a finite hypothesis class chosen for a learning spaceZ and
ℓ : H×Z → [a, b] is a bounded loss function, thenH enjoys the uniform convergence
property with repsect toZ and has sample complexity

nUC
H (ϵ, δ) ≤

⌈
(b− a)2 ln(2|H|/δ)

2ϵ2

⌉
.

Moreover, the classH is agnostically PAC learnable using ERMwith sample complexity

nH(ϵ, δ) ≤ nUC
H (ϵ/2, δ) ≤

⌈
2(b− a)2 ln (2|H|/δ)

ϵ2

⌉
.

Proof. In the realizability setting, we bounded the probability of drawing a sample for
which our risk tolerance was violated. We begin in a similar manner, only this time, we wish
to bound the probability of drawing a sample for which our uniform convergence tolerance
is violated. Define the set of such samples to be

Sbad = {S : ∃h ∈ H for which |LS(h)− LD(h)| > ϵ} .

Like before, we write Sbad as a union, only now we need to consider all hypotheses (because
we want convergence uniformly overH) so we write

Sbad =
⋃
h∈H

{S : |LS(h)− LD(h)| > ϵ} .

Applying both the inclusion-exclusion bound and Hoeffding’s Inequality (and specifically,
Eq. (1.7)), we obtain
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P
S∼Dn

[S ∈ Sbad] ≤
∑
h∈H

P
S∼Dn

[{S : |LS(h)− LD(h)| > ϵ}] [Union Bound]

≤
∑
h∈H

2 exp

(
−2nϵ2

(b− a)2

)
[Hoeffding]

= |H|2 exp
(

−2nϵ2

(b− a)2

)
.

We now choose δ such that |H|2 exp
(

−2nϵ2

(b−a)2

)
≤ δ and rearrange

2|H|
δ

≤ exp

(
2nϵ2

(b− a)2

)
⇒ ln

(
2|H|
δ

)
≤ 2nϵ2

(b− a)2

to find that if we use

n ≥
⌈
(b− a)2 ln(2|H|/δ)

2ϵ2

⌉
instances, then the probability of sampling an S such that |LS(h)− LD(h)| ≤ ϵ is at least
1− δ. Since nH is the minimum such number that achieves the uniform convergence
property,

nUC
H (ϵ, δ) ≤

⌈
(b− a)2 ln(2|H|/δ)

2ϵ2

⌉
and the first part of the proof is finished. The second part follows quickly by plugging ϵ/2
into nUC

H . That is, from Lemma 1.1, we know that if our sample is ϵ/2 representative, then
we achieve LD(hS) ≤ minh∈H LD(h) + ϵ. We have previously shown that a sample with
nUC
H (ϵ, δ) instances is ϵ representative, so choosing nUC

H (ϵ/2, δ) instances for our sample
size yields the desired result

nH(ϵ, δ) ≤ nUC
H (ϵ/2, δ) ≤

⌈
2(b− a)2 ln (2|H|/δ)

ϵ2

⌉
and the proof is complete.

□

14



1.2 TheNo Free Lunch Theorem

We have previously discussed the importance of bias and how we can use it to avoid over-
fitting. Our first try at avoiding overfitting involved restricting hypotheses to some finite
class. Two natural follow up questions are, “Do we need bias in order to learn?” and “Are
hypothesis classes of infinite size learnable?” The second question we will address in a later
section, but it turns out the two questions are not unrelated, as they are both answered by
restricting our view to some subsetC of our domainX .

1.2.1 No Free Lunch

We now turn to the question, “Do we need bias to learn?” Inductive bias can be interpreted
as prior knowledge or beliefs about the task we are trying to learn—for if we did not have
prior knowledge/beliefs, how would we know what choice ofH to make? In what follows
we will address the necessity of such prior knowledge. That is, we will prove there is no
universal learning algorithm.

The key idea behind our argument is this: if there was a universal learner, then said
learner would have to achieve PAC learnability on any task we already know is PAC learn-
able. We have already shown that realizable binary classification is PAC learnable. There-
fore, if we can argue that for any algorithmA (including the supposed “universal learner”)
there exists binary classification tasks whereA can6 fail, then we have shown that no such
universal learner exists. This is exactly what we will do, but to do so, we start with a lemma:

Lemma 1.2 LetA be any learning algorithm for the task of binary classification with respect
to the 0-1 loss over a (finite) domainX . Denote the size of the training sequence S bym. Let
C be some subset ofX with size 2n. IfA receives a sequence S of n instances (not necessarily
distinct) fromC × {0, 1} and returns a functionA(S) : C → {0, 1}, it holds that

max
i∈[22n]

E
S∼Di

[LDi
(A(S)] ≥ 1/4.

6The word “can” is extremely important here. We aren’t arguing that any algorithm fails. Rather, we are
arguing that for any algorithm, there exists SOME task(s) on which it fails, but that’s okay because in this
case (binary classification) a different algorithmA′ could learn that task. In other words, algorithms biased
towards different results will perform differently on different tasks.
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Proof. Observe that there are T = 22n possible functions fromC to {0, 1} :

fi(c1) fi(c2) · · · fi(c2n)

f1 0 0 · · · 0

f2 0 0 · · · 1
...

...
... . . . ...

fT 1 1 · · · 1

Next, for each function fi, letDi uniformly distribute instances overC × {0, 1} according
to fi. That is,

D[(x, y)] =

1/|C| if y = fi(x)

0 otherwise.

Notice that there are k = (2n)n possible sequences of n examples fromC . We denote these
sequences by S1, . . . , Sk and we let Si

j denote the sequence of labeled instances:

Si
j =

(
(x1, fi(x1), . . . , (xn, fi(xn)

)
.

Under this notation, if the distribution isDi then the possible training sequencesA can
receive are Si

1, . . . S
i
k, and becauseDi is uniformly distributed according to fi, all of

Si
1, . . . S

i
k are equally likely to be sampled. Hence,

E
S∼Dn

i

[LDi
(A(S))] =

k∑
j=1

LDi
(A(Si

j)P (Si
j) =

1

k

k∑
j=1

LDi
(A(Si

j).

We now introduce a bound and the maximum function using what I call the
Max-Min-Average (MMA) property. Namely, for some set of values, the maximummust
be greater than or equal to the average, which must be greater than or equal to the
minimum. Using the MMA property will allow us to rewrite our work and make progress.
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Namely, we have

max
i∈[T ]

1

k

k∑
j=1

LDi

(
A
(
Si
j

))
≥ 1

T

T∑
i=1

1

k

k∑
j=1

LDi

(
A
(
Si
j

))
=

1

k

k∑
j=1

1

T

T∑
i=1

LDi

(
A
(
Si
j

))
≥ min

j∈[k]

1

T

T∑
i=1

LDi

(
A
(
Si
j

))
.

(1.8)

Remark 1.1 In the above, the intermediate step is necessary. Notice that our maximum is
over i whereas our minimum is over j. We achieve these bounds simply by flipping the sums
and respective coefficients in the equality in the middle.

Now observe that for any Sj , there must be some corresponding set of values v1, . . . , vp in
C that do not appear in Sj , because |Sj| = n < 2n = |C|. If |Sj| = n then p = n so
clearly p ≥ n. That is, there are at least as many elements inC that are not in Sj as there are
in Sj . Thus, for every function h : C → {0, 1} and every iwe have

LDi
(h) =

∑
x∈C

1[h(x)̸=fi(x)]P (Z = (x, f(x)))

but by the definition ofDi, we have P (Z = (x, f(x))) = 1/|C| so the above can be
rewritten as

LDi
(h) =

1

2n

∑
x∈C

1[h(x)̸=fi(x)].

Next, notice that even though p ≥ n, it is never true that p = 2n. Since S needs to consist
of at least one unique instance inC , the largest p can be is 2n− 1. Hence,

LDi
(h) =

1

2n

∑
x∈C

1[h(x)̸=fi(x)] ≥
1

2n

p∑
r=1

1[h(vr )̸=fi(vr)] ≥
1

2p

p∑
r=1

1[h(vr )̸=fi(vr)] (1.9)
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where the last inequality follows because p ≥ n so 1/2n ≥ 1/2p. We can now do some
work that will allow us to eventually rewrite Eq. (1.8) and complete the proof. Namely,
combining our work from Eq. (1.9) with Eq. (1.8) we have

1

T

T∑
i=1

LDi
(A(Si

j) ≥
1

T

T∑
i=1

1

2p

p∑
r=1

1[A(Si
j)(vr )̸=fi(vr)]

.

Some rearrangement yields

1

T

T∑
i=1

1

2p

p∑
r=1

1[A(Si
j)(vr )̸=fi(vr)]

=
1

2p

p∑
r=1

1

T

T∑
i=1

1[A(Si
j)(vr )̸=fi(vr)]

=

(
1

2

)
1

p

p∑
r=1

1

T

T∑
i=1

1[A(Si
j)(vr )̸=fi(vr)]

which allows us to apply MMA to the last equality and get

1

T

T∑
i=1

LDi
(A(Si

j)) ≥
1

2
min
r∈[p]

1

T

T∑
i=1

1[A(Si
j)(vr )̸=fi(vr)]

. (1.10)

From here, we are almost finished. We just need a way to evaluate the sum on the right
hand side of the above. Since the minimum function is being applied, vr is fixed. This
allows us to partition f1, . . . , fT into two sets: the set of functions fi where fi(vr) = 1

and the set of functions fi where fi(vr) = 0. The use of this comes from the following
fact: for every fi(vr) = 0, there is one and only one fi′ ∈ f1, . . . , fT that agrees with fi on
all points inC except vr. Formally, for every fi(vr) = 0 there is one and only one
fi′(vr) = 1 for which fi(x) = fi′(x) for all x besides vr. Moreover, because the only place
where fi and fi′ differ is vr and, by definition, vr is not in either of Si

j or Si′
j , it must be true

that Si
j and Si′

j are the same sequence. Hence, the algorithmAwill return the same
function on both Si

j and Si′
j so

1[A(Si
j)(vr )̸=fi(vr)]

+ 1[A(Si′
j )(vr )̸=fi′ (vr)]

= 1

because (WLOG) fi(vr) = 0 and fi′(vr) = 1 so one (and only one) of themmust be
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correct. We can now rewrite Eq. (1.10) by grouping all the Si
j and Si′

j pairs (of which there
are T/2) together in the sum on the right. That is,

1

2
min
r∈[p]

1

T

T∑
i=1

1[A(Si
j)(vr )̸=fi(vr)]

=
1

2
· 1
T

· T
2
=

1

4
.

Again, the min function will just fix our vr so all our previous work still applies and the
above is valid. Putting it all together, we have

E
S∼Dn

i

[LDi
(A(S))] =

1

k

k∑
j=1

LDi

(
A
(
Si
j

))
[Uniformity ofDi] (1.11)

⇒ max
i∈[T ]

E
S∼Dn

i

[LDi
(A(S))] ≥ min

j∈[k]

1

T

T∑
i=1

LDi

(
A
(
Si
j

))
[MMA from (1.8)] (1.12)

⇒ max
i∈[T ]

E
S∼Dn

i

[LDi
(A(S))] ≥ 1/4 [Because (1.10) evaluates to 1/4]

(1.13)

which completes the proof because T = 22n.

□

We can now use Lemma 1.2 to prove the No Free Lunch theorem.

Theorem 1.3 (No Free Lunch) LetA be any learning algorithm for the task of binary clas-
sification with respect to the 0-1 loss over a (finite) domainX . Denote the size of the training
sequence S by n. If n is any number smaller than |X |/2, then there exists a distribution over
X × {0, 1} such that:

1. There exists a function f : X → {0, 1} with LD(f) = 0 and,

2. with probability of at least 1/7 over the choice of S ∼ Dn, we have that LD(A(S)) ≥
1/8.

In other words, whenm < |X |/2, there exists conditions for whichA fails to learn.
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Proof. Start by noticing that becausem < |X |/2, we can indeed find a subsetC of size 2n
that agrees with our work in Lemma 1.2. Meaning, we choose theDi and fi in Lemma 1.2
that come from

max
i∈[T ]

E
S∼Dn

i

[LDi
(A(S))] ≥ 1/4

and extend them to all ofX . That is, for some subsetC ofX with size 2n, let the
distribution overX be

D[(x, y)] =

1/|C| if f(x) = y and x ∈ C

0 otherwise

where f(x) = fi(x) for x ∈ C , and (WLOG) f(x) = 0 if x /∈ C . Notice that what we
assign to any x /∈ C is irrelevant because an x /∈ C will never be be drawn when sampling
according toD. To show the first statement in No Free Lunch holds, observe that LD(f) is
clearly 0 because our probability distribution only allows us to sample correctly labeled
instances fromC . Now, from our previous work in Lemma 1.2, we have

E
S∼Dn

[LD(A(S))] ≥ 1/4.

We nowmake use of a corollary fromMarkov’s inequality, which is proven in10 (see
Lemma B.1):

P[Z > 1− a] ≥ µ− (1− a)

a
.

In this case, we have

P [LD(A(S)) ≥ 1/8] ≥
E

S∼Dn
[LD(A(S))]− 1/8

7/8
≥ 1/4− 1/8

7/8
= 1/7

so indeed, P [LD(A(S)) ≥ 1/8] ≥ 1/7which proves the second statement in No Free
Lunch and finishes the proof.

□
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1.3 VC Theory

VC theory is quite difficult—even more so than everything we have done thus far. While
proofs are important, the difficulty of the proofs surrounding VC theory are such that they
perhaps take away from the story we are telling more than they add, given the time our au-
dience will have to read this work. Thus, we will not work through the typical proofs one
would be exposed to when studying VC theory. The curious reader may find such proofs
inUnderstandingMachine Learning 10. We will, however, provide a brief summary of the
major ideas that make VC theory so useful.

Definition 1.15 (Restriction ofH to C) LetH be a class of functions fromX to {0, 1}
and letC = {c1, . . . , cm} ⊂ X . The restriction ofH toC , denotedHC , is the set of func-
tions fromC to {0, 1} that are induced byH onC . That is,HC is a subset of {0, 1}|C| that
contains all binary labelings ofC when applying a hypothesis onC :

HC = {(h(c1), . . . , h(cn)) : h ∈ H} .

The case where a restriction results in the shattering of a setC is of particular importance.

Definition 1.16 (Shattering) If the restriction ofH to a setC ⊂ X results in every possible
binary labeling ofC then we sayH shattersC . That is, ifHC contains every function fromC

to {0, 1}, then |HC | = 2|C| andC is shattered byH.

Though we will not rigorously establish why due to the difficulty of the proof, shattering
allows us to characterize learnability of binary classification via a quantity called the VC
dimension.

Definition 1.17 (VC Dimension) The VC dimension of a hypothesis classH, denoted by
V C(H) is the maximal size of a setC ⊂ X that can be shattered byH. IfH can shatter sets
of arbitrarily large size, then we sayH has an infinite VC dimension.

Remark 1.2 If V C(H) = d thenH shatters any subsetC for which |C| ≤ d.
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Notice that because V C(H) = d, then for any subsetC ⊂ X of size d, restrictingH
toC generates all binary labelings of the elements ofC . Thus, for any7 C ′ ⊂ C , it follows
thatH is also capable of shatteringC ′. We denote this visually with a table. In particular,
for |C| = d = V C(H) the set |HC | contains all binary labelings of d elements.

fi(c1) fi(c2) · · · fi(c2n)

f1 0 0 · · · 0

f2 0 0 · · · 1
...

...
... . . . ...

fT 1 1 · · · 1

and for some subsetC ′ ⊂ C , imagine we chopped off part of the table. For instance if
|C ′| = nwith n < d then just consider all columns from 1 to n. The rows will contain
some repeated elements, but clearly, all functions fromC ′ to {0, 1}will be contained in
columns 1 to n. We nowmake use of NFL and the above definitions to see why the VC
dimension of a hypothesis class is so important.

Corollary 1.1 LetH be a hypothesis class fromX to {0, 1}. Let n be a training sequence
size for S. Assume that there exists a setC ⊂ X of size 2n that is shattered byH. Then, for
any algorithmA there exists a distributionD overX × {0, 1} and a predictor h ∈ H such
that LD(h) = 0 but with probability of at least 1/7 over the choice of S ∼ Dn we have
LD(A(S)) ≥ 1/8.

Directly from the Corollary 1.1, we have

Theorem 1.4 IfH is a hypothesis class of infinite VC dimension thenH is not PAC learn-
able.

Proof. SinceH has infinite VC dimension, then for any training size we pick, there exists a
shattered size of 2n, which implies the failure of learnability from Corollary 1.1.

□
7Note: We say that for anyH, the empty set is shattered byH.
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At this point we might wonder, does a finite VC dimension imply learnability? Not only
does a finite VC dimension imply learnability, this result is so important that it has earned
the title, “The Fundamental Theorem of Learning”.

Theorem 1.5 (FTL) LetH be a hypothesis class of functions from a domainX to {0, 1}
and let the loss function be the 0-1 loss. Then, the following are equivalent:

1. H has the uniform convergence property.

2. Any ERM rule is a successful agnostic PAC learner forH.

3. H is agnostic PAC learnable.

4. H is PAC learnable if the realizability assumption holds.

5. Any ERM rule is a successful PAC learner forH if the realizability assumption holds.

6. H has a finite V C dimension.

Recall the algebraic and probabilistic cartwheels we did to make provable statements about
finite hypothesis classes. Imagine that for every infinite hypothesis class we had to do similar
cartwheels. That would be unfortunate. Instead, we need only show that a hypothesis class
has finite VC dimension. With that, we are ready to begin.
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When approaching a problem you do not know how to
solve, turn it into a problem you do know how to solve.

The Art of Problem Solving

2
Partitioning the Family of Nonlinear

Classification Tasks

The Fundamental Theorem of Learning (FTL) equates learnability with a finite VCDi-
mension. While this is a very powerful theoretical tool, it can be abused if we are not care-
ful. Linear predictors, for instance, have a finite VC dimension but obviously, they do not
generalize well to nonlinear data. Does this contradict the FTL? No. The FTLmakes state-
ments about learning in both the realizable and agnostic setting. If the data is nonlinearly
separable, then realizability fails with respect to linear predictors and therefore the finite
VC dimension of linear predictors implies they are agnostic learners with respect to nonlin-
ear data.
Notice that agnostic learners are only as strong as the strongest hypothesis in their hy-

pothesis class. In other words, being an agnostic learner could be meaningless, and indeed,
we can see this visually in Fig. 2.1. Namely, if the data is nonlinear, but still loosely resem-
bles a line, linear predictors might be a viable approximation choice. Conversely, if the data
is nonlinearly separable by some function that does not resemble a straight line at all, then
clearly, we need something stronger than linear predictors.
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Figure 2.1: Linear Approximations of Nonlinear Curves

Tomake sense of how we might construct a stronger model in the nonlinear setting, we
begin by partitioning all nonlinear classification tasks inR2 into three categories: curve clas-
sifiers, loop classifiers, and no man’s land. By partitioning tasks into categories, we enable
the exploitation of geometric structure. Meaning, classifying nonlinear data without any
knowledge of what the true labeling function may be is simply too generic a task. We need
to have some sense of how the space is separated.

2.1 Curve Classifiers

A curve classifier inR2 is comprised of a nonlinear, injective function and an inequality
constraint.

Definition 2.1 Consider some nonlinear function f : R → R that both separatesR2 into
two spaces and is injective. For some instance x ∈ R2, the label of x is given by one of the curve
classifiers 1[x2≥f(x1)] or 1[x2≤f(x1)] where 1[condition] = 1 if condition is true.

Curve classifiers are perhaps the easiest of the three categories to extend to higher di-
mensions. The important property to maintain is that of unique outputs. If we preserve
unique output from a given input, the extension of curve classifiers toR3 and beyond is
a manifold that does not pass through or intersect with itself. Ultimately, though, curve
classifiers are not of prime interest to us because the central theme of our work is examin-
ing what happens when we decrease or increase bias. In the case of curve classifiers, it is not
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Figure 2.2: Curve Classifier Example

clear what increasing or decreasing bias would even mean. TheWeierstrass Approxima-
tion Theorem8 tells us that over an interval, any function can be well approximated by a
polynomial—suggesting that maybe we can increase or decrease bias by changing the degree
and coefficients of a polynomial, but we leave this to future work.

2.2 Loop Classifiers

Loops inR2 are obtained by taking some curve on an interval and gluing together its end-
points.

Definition 2.2 A “single” loop is any continuous function f : [a, b] → R2 satisfying

f(j) = f(k)

if and only if j = a and k = b. That is, f is injective everywhere except on the endpoints.
Note that “single” is in quotes because certain functions can create multiple clusters like the
single loop in Fig. 2.3.

Observe that the above is not a definition for a loop classifier, but just a loop itself, and a
single-loop at that (we will talk about loop classifiers and multiple-loops soon). It is worth-
while to discuss what is or is not a single-loop in a bit more detail, because we can get our-
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selves into trouble if we are not careful about subtleties. In particular, notice that the above
definition does not allow for loops to intersect with themselves anywhere other than the
“endpoints”. An example of an invalid intersection is given in Fig. 2.3

Figure 2.3: Single vs Multiple Loop

To see why the curve on the right of Fig. 2.3 is not a single-loop, suppose that the center
is where the endpoints lie. We claim that the endpoints are not the only way to reach the
center. Start at the center and walk along the loop as indicated by the arrows. You will reach
the center again prior to covering the whole loop, implying an intersection. Formally, if the
curve on the right in Fig. 2.3 is given by some mapping g : [a, b] → R2, then there exists
real numbers a < j < k < b and intervals [a, j], [j, k], [k, b] such that the image of
[a, j], [j, k], [k, b] under g all contain the center, which violates the injective property in
Definition 2.2.

2.2.1 Polar Coordinates

Prior to defining loop classifiers, we need to discuss polar coordinates and their role in Defi-
nition 2.2. Specifically, definition Definition 2.2 does not require that the polar interpreta-
tion of the loop is restricted to 0 ≤ θ ≤ 2π. Suppose, for instance, that data were labeled
according to a single-loop that indefinitely swirls around itself like that in Fig. 2.4. In order
to reach certain points on the loop, we will certainly need θ > 2π.

2.2.2 Single-Loop Classifiers

A single-loop classifier labels an instance as positive if the instance is inside or on the loop,
and negative otherwise. By positive and negative, we mean “yes/no” or “true/false”. Since
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Figure 2.4: Nonending Swirly Loop (Fermat’s Spiral2)

it is conventional to represent 1 as true and 0 as false, a negative instance has a value of 0,
despite the fact that 0 is neither negative nor positive. Recalling that the boolean operator
1[condition] returns 1 if a condition is true, and 0 otherwise, we obtain the definition of a
loop classifier using polar coordinates.

Definition 2.3 Consider an instance x. We say that x is positively labeled if the radius r of
x is less than or equal to rθ where rθ is the radius of the loop at the given θ value. That is, a
loop classifier is given by 1[r≤rθ].

2.2.3 Multiple-Loop Classifiers

One would think that multiple-loop classifiers follow fairly intuitively from single-loop clas-
sifiers. One would be mistaken. Let us first start with a simple example. Imagine we place
a torus inR2. Which areas are positively labeled and which areas are negatively labeled?
We can’t say “inside the loop” anymore because we need to make a choice as to which loop
(and we need to decide what to do about any overlapping regions). In Fig. 2.5, for instance,
we could interpret “inside the loop” three different ways.

The three interpretations we could use are 1) that “inside the loop” means being inside
the circle with the smaller radius (left plot), 2) being inside the circle with larger radius and
outside of the circle with the smaller radius (middle), or 3) as being anywhere inside either
of the circles (right). While we could simply make a choice and stick with it, that does not
generalize well.
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Figure 2.5: Three Interpretations of “Inside the Loop”

If we allow for any continuous function where the endpoints are the same to be a loop
worthy of consideration, we allow for arbitrary self-intersection. To see why this is not ideal,
we take a brief stroll down knot theory lane. With respect to this commentary, knots exist
inR3. In Fig. 2.6, we can see that there are “discontinuities” in the drawings, denoting the
occurrence of the string of the knot passing under or above itself.

Figure 2.6: Knots (Image Source: Wikipedia 5)

Imagine we project the knots ontoR2 so that the “discontinuities” are now intersection
points. Suppose also that we treat the projections like loops. Now try to separateR2 using

29



the knots. It is not at all clear what “separate” means. Do we simply ignore the fact that
there are multiple distinct bounded regions on a single knot and classify everything “inside
the knot” as belonging to one class? Or do we play or a sort of leap frog game, similar to
what we did in interpretations one and two of the torus in Fig. 2.5?

Admittedly, if we really wanted to, we could devise a set of assumptions about multiple-
loop classifiers in general, but for the most part, we will focus our attention on data with
more pleasant structure, and for good reason. When data is labeled by a multiple-loop clas-
sifier with several different bounded regions, the problem is essentially a multiclass classi-
fication problem. Yes, the data still has binary labels, but the classifier divides the space up
into more than two regions, so one could assign a different class to each region. Multiclass
classification is considerably more difficult than binary classification, and therefore, generic
multiple-loop classifiers are a bit beyond the reach of this project. Does this mean we will
ignore multiple-loop classifiers entirely? No.

2.2.4 PleasantMultiple-Loop Classifiers

Consider the folium2 curve in Fig. 2.7 and observe that at the intersection point at the cen-
ter the curve violates the injective property required in Definition 2.2.

Figure 2.7: Folium Curve

Since injectivity does not hold, the folium curve is a multiple-loop classifier, but it is not
an unpleasant one. There is a very clear way to define how a folium curve would classify
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data. Namely, we can write a folium in polar coordinates with

r(a, b, θ) = −b cos θ + 4a+ cos θ · sin2 θ (2.1)

and therefore, folium classifiers obey Definition 2.3, despite the fact that they are not single-
loop classifiers.

There exist other multiple-loop curves for which there is a clean interpretation of data
would be labeled. Notice that in Fig. 2.8 we have two single-loop curves.

Figure 2.8: Cassinian 2 Curve

It is not unreasonable to argue that Definition 2.3 implies that points inside the two
ovals in Fig. 2.8 are positively labeled. We can generalize this notion of multiple-loop classi-
fiers being comprised of disjoint single loops.

Definition 2.4 Consider a multiple-loop curveC that can be written as the union of n single-
loop curves where the areas of the single-loops curves are disjoint. Let (rk, θk) be the radius and
angle of the polar coordinate representation of an instance x ∈ R2 such that the radius rk and
angle θk is calculated with respect to the center of single-loop k. Now denote rθk to be the radius
of loop k at angle θk. The multiple-loop labeling function associated withC is given by

1[(r1≤rθ1 )∨(r2≤rθ2 )∨···∨(rn≤rθn )]
.
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Observe that if we wanted to, we could rewrite the folium curve as a union of three
single-loop curves and then a folium classifier obeys Definition 2.4.
Before we conclude our discussion of multiple-loop classifiers, we should draw atten-

tion to an important distinction between single-loop and multiple-loop classifiers. Earlier
we mentioned that multiclass classification is difficult and that said difficulty is one of the
reasons that we are not fond of multiple-loop classifiers. One might wonder, if single-loop
classifiers are allowed to have multiple clusters, does this introduce the multiclass classifica-
tion difficulty we have briefly mentioned? No. The key difference is that a single loop, be it
with multiple clusters or not, is still just one region. Hence, identifying the curve defining
the loop (or even just a decent approximation of it) is enough to classify the entire learning
space. In the multiple-loop setting, we cannot exploit boundaries to the same degree. That
is, finding the boundary of a single-loop in the multiple-loop setting does not necessarily
tell us anything about the other single-loops.

2.2.5 Loops in Higher Dimensions

Like curve classifiers, loop classifiers can be extended to higher dimensions. In this case, we
might think of a loop classifier inRn as some manifold homeomorphic6 to an n sphere
where anything inside or on the manifold is positively labeled and anything outside is nega-
tively labeled. Like curve classifiers, we make a distinction to avoid considerations of objects
with complicated qualities like self-intersection or objects that pass through themselves. In
the two-dimensional case, self-intersection caused ambiguities, but it is actually worse in
higher dimensions. To see how, consider a Klein bottle (Fig. 2.9). Certain interpretations
of the phrase “everything inside positive, everything outside negative” lead to contradictory
labelings. For instance, imagine the white space surrounding the bottle is negative. If we
follow the white space into the whole, down the handle, and back up we will end up inside
the bottle, implying that the inside of the bottle is both inside and outside at the same time.

2.3 NoMan’s Land

For completeness, we will briefly discuss the classifiers that live in what we call “NoMan’s
Land (NML).” A NML classifier is any nonlinear classifier that does not lead to contradic-
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Figure 2.9: Klein Bottle (image source: Wikipedia 12)

tory labeling and does not obey definitions Definition 2.4 and Definition 2.2. That is, if
one can construct a self-intersecting object that passes through itself and somehow does
not force a point to be both positive and negative at the same time, one has constructed a
NML classifier. Similarly, if one wanted a classifier that uses combinations of loops and/or
curves, that would also be a NML classifier. NML classifiers are not something we will dis-
cuss much at all because they are simply too generic. Since NML do not follow some type
of structure, it is likely impossible to even try to approximate learning without domain spe-
cific knowledge.
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The man who moves a mountain begins by carrying away
small stones.

Confucius

3
Loop Classifiers and Apriori Knowledge

Thus far, we have introduced learning theoretic ideas and partitioned nonlinear classifica-
tion into more manageable categories. We have not, however, made any progress towards
answering the big question, “To what degree can we maximize prediction accuracy while
minimizing apriori knowledge?” In this chapter, we outline a series of loop classifiers that
model progressively weaker apriori knowledge. Doing so will give us a framework to in-
spect the importance of making appropriate assumptions prior to learning. In Chapter 4,
we will conduct experiments using the framework we have built up in this chapter.

3.1 The Spectrum of Apriori Knowledge

Imagine we could quantify the strength of apriori knowledge and put it on a line as shown
in Fig. 3.1.

We know everything We know nothing

Figure 3.1: Spectrum of Knowledge

Neither end of the spectrum is particularly interesting. If we know everything there is to
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know (the true labeling function and/or the distribution of the data), then learning is not
necessary. If we know nothing, then No Free Lunch kicks in and learning is infeasible. Our
goal is to get as close to “knowing nothing” as possible while still achieving decent (roughly
90% accuracy) generalization. Admittedly, the 90% number is arbitrary. Depending on the
scenario, that number may be much higher than is reasonably achievable in practice, but it
could also be far too low. If we are trying to detect cancer, for instance, a 10% failure rate is
bad.

Rather than trying to jump to the right end of the spectrum right away, we think it will
be helpful to start in the realizable setting, where we know as much as there is to know with-
out knowing everything. There are many realizable loop classifiers we can consider, but we
have chosen squares as the ideas present in rectangular loops will be helpful throughout the
progression. To get a sense of how this progression will unfold, we give a rough sketch on
the spectrum in Fig. 3.2.

We know
everything

We know
nothing

Known Structure
and Center

Known Structure
but not Center

Weak Knowledge
of Structure Arbitrary Loops

Figure 3.2: Sketch of Progression From Left to Right

Knowing the structure and center of the loop is akin to knowing the loop is a circle or
hexagon centered at, say, the origin. Learning is then as simple as searching for a proper
radius length (Section 3.2). Knowing the structure but not the center is slightly more
challenging as we now need to estimate where the loop lies in space, but for a properly
constructed learning scheme, this might (emphasis on might) still be a realiazable setting
(Section 3.3). Learning begins to get challenging when we remove some of our knowledge
of the structure of the loop. Imagine, for instance, that we don’t know the exact structure
of the loop, but we somehow know that it is convex (or convexish). If we know the shape
is convex or nearly convex, perhaps we can approximate it with some hypothesis class of
convex shapes (Section 3.4). Finally, we make things about as challenging as possible by re-
moving almost all knowledge entirely; if all we know is that the true classifier is a loop, we
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can no longer exploit convex geometry andwe have the additional obstacle of estimating
where the loop is in space (Section 3.5).

3.2 SquaresWith KnownCenters

In Section 3.2 and we will construct learning settings in which data is nonlinearly separa-
ble but still realizably learnable. The importance of considering nonlinear classification in
the realizable setting is two-fold. First, the realizable setting is as easy as easy gets. This set-
ting acts as the ceiling for what a learner can achieve and therefore gives us something to
compare to as we make learning progressively more challenging. Second, we want to draw
attention to the fact that nonlinear classification is not necessarily “more difficult” than
linear classification per se.

In the case of linearly separable data, knowledge of the linear structure is enough to
achieve a realizable (arbitrarily strong) learner provided one has access to a sufficiently
large sample. Nonlinear data is not actually any different. If one happens to know the ex-
act structure of their data, then realizability holds and learning is as easy as in the linearly
separable setting. In other words, if your data is labeled by a circle, searching for the appro-
priate radius size is no harder than searching for the value of the slope and intercept of a
line that separates linear data. To see this phenomenon in real time, we introduce the con-
centric squares setting and the square learning space.

3.2.1 Defining the Learning Space

Unless specified otherwise, the reader should assume from this point on that labels are bi-
nary,Y = {0, 1}, and that in all learning settings, the domain space is contained within the
unit square centered at the origin.

Definition 3.1 We call the learning space given by the unit square at the originXsq , and it
is formally given by

Xsq = {(x1, x2) : x1, x2 ∈ [−0.5, 0.5]} ,

which reads, “The domain space ‘x square’ is the set of all ordered pairs (x1, x2) where both x1

and x2 belong to the closed interval between−0.5 and 0.5.
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Xsq

(0, 0)

(−0.5, 0) (0.5, 0)

(0, 0.5)

(0,−0.5)

Figure 3.3: Xsq Learning Space

Notice that this restriction allows for a very pleasant interpretation of sampling if data is
sampled uniformly over the learning space. Namely, if data is sampled uniformly overXsq,
the probability of sampling a point in some area ofXsq is simply the area itself (this will be
important later when we discuss experiments). Another nice feature that aboutXsq is that
it is very natural to search through using concentric squares, which is why we begin our
progression in Fig. 3.2 with squares.

3.2.2 Defining Square Classifiers

We denote a loop classifier where the loop is a square withQb,c where c is the center of the
square and b is a bound that determines the size of the square1. Namely, b is the length of
the perpendicular bisector between the center and a side of the square (see Fig. 3.4) and it
then follows that the length of the side square is 2b.

We choose to define the square in this way because it results in a clean definition of the
labeling function. If the square is centered at the origin, for instance, the labeling function

1The reader may wonder why we useQ instead of S. Recall S is what we use to denote training sequences.
The letterQ seemed like the next best choice...
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Figure 3.4: Bound b Given By Perpendicular Bisector

Qb, (0,0) is simply given by

Qb, (0,0) =

1 if − b ≤ x1 ≤ b AND − b ≤ x2 ≤ b

0 otherwise.
(3.1)

Recalling that 1[condition] = 1 if and only if the condition is true, we can write Eq. (3.1)
more succinctly with

Qb, (0,0)(x) = 1[|x1|≤b] · 1[|x2|≤b] (3.2)

Notice that the symmetry of squares is actually restrictive enough to simplify Eq. (3.2)
even further

Qb, (0,0)(x) = 1[max(|x1|,|x2|)≤b]. (3.3)

Remark 3.1 The utility of Eq. (3.3) and Eq. (3.2) is that they generalize to other learning
scenarios. Eq. (3.2) generalizes to rectangles that are not squares if we have two different
bounds and Eq. (3.3) extends to higher dimensions. If the learning space exists inRn and
the classifier we are considering is given by some hyper cube inRn, the labels are determined
by 1[max(|x1|,...,|xn|)≤b].
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In the case that the square is not centered at the origin, we simply account for the shift of
the center by shifting the instance coordinates accordingly to achieve an equivalent result.
Summarizing all the above and generalizing to squares with any center inXsq yields the
following definition.

Definition 3.2 A square classifierQb,c inXsq is given byQb,c(x) = 1[max(|x1−c1|,|x2−c2|)≤b].

When we conduct experiments, we will compare two realizable settings: one in which we
know the center of the loop in advance and one in which we do not. In the case where we
know the center in advance, we will fix the center at the origin. To clean up notation a bit,
we will introduce a a modified version of Definition 3.2 in which we drop the center from
the subscript.

Definition 3.3 A square classifer whose center is at the origin shall henceforth be denoted by
Qb(x) withQb(x) = 1[max(|x1|,|x2|≤b)].

3.2.3 The Concentric Squares Hypothesis Class

We now formalize the realizability hinted at in Fig. 3.2. In particular, we define an assump-
tion that, when true, results in a clear choice for a realizable hypothesis class.

Assumption 3.1 If we have reason to believe data is labeled by a square centered at the ori-
gin, then we are assuming that the true labeling function is someQb with an unknown bound
b.

Though it may not be immediately obvious, this is an extremely strong assumption and
if it holds true, there exists distributions for which we can PAC learn with a sample as small
as 10(ish) instances. To get a sense of how ridiculous this is, we provide a visual (Fig. 3.5) of
a sample of 10 instances sampled uniformly overXsq and labeled by someQb.
Despite the sparseness of the data set, if we pick PAC parameters δ = 0.2 and ϵ = 0.1,

the sample in Fig. 3.5 should2 be sufficient for an ERM learner. That is, if the true classifier
is indeed a square at the origin and we happen to correctly assume so in advance, on average,

2Wewill discuss the sample complexity of learning square classifiers in detail in Chapter 5.
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Figure 3.5: Sample of 10 Instances

we can be at least 90% accurate at least 80% of the time with a sample as seemingly mean-
ingless as the one above.

The clear choice ofH when learning under assumption Assumption 3.1 is a set ofQb

functions with varying b values. If we allow for b to be any real value between 0 and 0.5,
then our hypothesis class is infinite. We could try to prove the set of allQb has a finite VC
dimension, but we have already made efforts to prove statements about finite hypothesis
classes. For now, we choose to be consistent with our work in Section 1.1 by choosing a
finite hypothesis class. We arbitrarily choose to increment b from 0.001 to 0.5. That is,
we chose to have |H| = 500. To informally justify this choice, observe in Fig. 3.6 what
happens as we increase our hypothesis space to a size of 500.

By inspection, it would seem that 500 hypotheses is likely to be sufficiently expressive for
decent generalization. Under the choice to makeH finite, we define the class like so.

Definition 3.4 The finite class of concentric squares with bounds ranging from 0.001 to 0.5
in increments of 0.001 is given by

Hsq =
{
Qb : b ∈ {0.001k}500k=1

}
.
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Figure 3.6: Concentric Squares Hypothesis Classis with Size |H| = 10 (left), |H| = 50 (middle), and |H| = 500
(right).

Remark 3.2 We go out of our way to writeHsq instead ofH because we will be defining sev-
eral different hypothesis classes in the coming sections. If we useH for all of them, commentary
would get needlessly confusing.

We have now adequately introduced square classifiers in which the center is not known.
The next step in our progression of apriori knowledge is to examine squares classifiers when
we do not know the center of the true labeling function.

3.3 Squares with UnknownCenters

In the previous setting we defined a finite hypothesis class of concentric squares centered
at the origin, and this exercise has its purpose, but clearly,Hsq is subject to poor gener-
alization if the true labeling function is not centered at the origin (and even poorer gen-
eralization if the loop is not a square). In this section, we handle the problem of a lack of
knowledge of the true labeling loop’s location in space. Poor knowledge of the true labeling
loop’s structure will be addressed in Section 3.4 and Section 3.5.

3.3.1 Families of Hypothesis Classes

If our apriori knowledge is such that we suspect that the true labeling function is a square,
but we do not know where that square is, then Assumption 3.1 no longer holds. We now
modify it ever so slightly and adjust our hypothesis class accordingly.

Assumption 3.2 If we have reason to believe data is labeled by a square, we make the as-
sumption that data is labeled by someQb,c with b, c unknown prior to training.
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As you can see, the assumption is almost exactly the same, but by removing knowledge
of cwe have actually removed significance bias from our model. To see just how significant,
we construct what we will denote as a “family of hypothesis classes”.

Definition 3.5 A familyF of hypothesis classes is a collection of hypothesis classesH1,H2, . . .

where eachHi is unique. That is, for some hypothesis h, if h ∈ Hi then h /∈ Hj for j ̸= i.

Remark 3.3 If the meaning of Definition 3.5 is not entirely clear yet, that is fine. We will
use Definition 3.5 in several different sections, so it is intentionally vague. Do not spend a
bunch of time on understanding the above definition in a vacuum as it will make much more
sense in context, as we will soon see.

When we try to learn under Assumption 3.2, we need some way of throwing out the
squares whose centers “disagree” with the training data. If, for instance, the training data
have some cluster of positive instances in the upper left, we do not want to consider squares
with centers in the lower right.

Figure 3.7: Reasonable vs. Poor Hypothesis Class Choices

Hypothesis class families give us a way to describe what it means “throw out” hypotheses
with bad centers. Consider, for instance, the following family.
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Definition 3.6 LetFsq be the family of hypothesis classes where each hypothesis class

Hc = {Qb,c : b > 0}

consists of concentric square classifiers centered at c. That is,Fsq is a set of sets given by

Fsq = {Hc : c ∈ Xsq} = {{Qb,c1 : b > 0} , {Qb,c2 : b > 0} , . . .} .

Imagine we have some way of using the training data to estimate the center of the clus-
ter of positive instances. Call the estimate ĉ. Instead of considering the infinitely many
classes of hypotheses inFsq, we could limit our model only toHĉ. In other words, we
could “throw out” any hypothesis classHc where c ̸= ĉ.

Before we move on, let us quickly make an observation about a subtle detail of Defini-
tion 3.6. Notice that the only restriction we applied to b inHc is that b > 0whereas in
Definition 3.4 we restricted b to be some member of the finite sequence {0.001k}500k=1. We
are releasing the restricting for two reasons. First, if we bound b from above at all, it does
not make sense to make that bound smaller than 1. To see why, consider some square with
a center in any of the four corners ofXsq. If we limit b to be some finite number less than
1, we are assuming that certain labeling functions will never occur, which is bold without
justification. If, for example, we limit b to be 0.5 as we did in Definition 3.4, then we are
assuming samples like that in Fig. 3.8 are impossible.

Figure 3.8: Square with b > 0.5
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3.3.2 To Realize orNot ToRealize, That is the Question

It is not clear whetherFsq is realizably learnable. Given thatFsq contains all labeling squares
Qb,c inXsq and Assumption 3.2 presumes we are looking for a labeling square, we might
hope thatFsq is realizably learnable if Assumption 3.2 holds. In order forFsq to be real-
izably learnable, realizably estimating the center of the true labeling square being one of
them.

Regardless of whetherFsq is realizable, one thing is certain: not knowing the center of
the true labeling square removes a lot of the bias we induced into the hypothesis class in
Section 3.2.3. Consequently, learning square classifiers without knowledge of the square’s
location in space should have a larger (perhaps significantly larger) sample complexity. All
the same, we suspect that squares with unknown centers will have lower sample complex-
ity than more complex shapes. Put differently, knowledge of the loop’s structure is more
important than knowledge of the loop’s location in space. This brings us to our next check-
point in the knowledge spectrum: learning with poor knowledge of the structure of the
loop.

3.4 Convex(ish) Loops

We have now discussed what it means to know as much as possible prior to learning (knowl-
edge of loop structure and location as seen in Section 3.2) and what it means to know
“almost as much as possible” (knowledge of loop structure but not location Section 3.3).
From here, we make our first step into murkier waters. What happens if we do not know
much about the structure of the loop prior to training? In particular, what if all we know
is that the loop is convex? That is, the loop could be a rectangle, a regular polygon, an ellip-
soid, etc. If the shape is convex, we could try to construct some family of hypothesis classes
where each hypothesis class represents a convex polygon (not necessarily regular) with n
sides. The problem with this approach is that it is not clear how to avoid overfitting with-
out the use of an astronomical sample size. If we do not limit the learner in some way, it is
entirely possible to return a wildly misguided model as depicted in Fig. 3.9.
Perhaps we can try to approximate an unknown convex shape with a shape that is flexible

enough to mold to training data, but not flexible enough to overfit? Does such a shape
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Figure 3.9: Overfit Polygon vs. True Labeling Loop

exist? Sort of. If we use rectangles, we might get a decent3 approximation for shapes that
are convex, or convex(ish). To see what we mean by “convex(ish)” consider shapes that were
once convex but are not convex after a perturbation of some kind, as opposed to something
that is “not convex at all” like the shapes shown in Fig. 3.10

Figure 3.10: Convex(ish) vs. Not Convex At All

The reader might be a bit skeptical about rectangles as an approximation of loops, and
rightfully so. Rectangles approximate loop classifiers about as well they cover the loop. We
will rigorously define what this means in Section 3.4.1, but first, let’s define rectangular
classifiers. Recall that in Eq. (3.2) we said that a square classifier centered at the origin can
be written asQb,(0,0)(x) = 1[|x1|≤b] · 1[x2≤b]. Rectangular classifiers are quite similar only
now we have two bounds instead of one.

Definition 3.7 A rectangular classifierRb,c is given by

Rb,c(x) = 1[|x1−c1|≤b1] · 1[|x2−c2|≤b2]

3We are using the word “decent” very loosely here.

45



where c ∈ Xsq and b1, b2 > 0.

As you might expect, we can extend the family of square classifiers (Definition 3.6) to
rectangular classifiers.

Definition 3.8 LetHRect,c = {Rb,c : b1, b2 > 0} be a set of rectangles that all have center
c. The family of rectangle hypothesis classes is given by

FRect = {HRect,c : c ∈ Xsq} .

3.4.1 HowGood Are Rectangles Really?

There is (at least) one problem with using rectangles to approximate unknown shapes: we
have now left the land of realizability. There is now an unwavering upper bound to how
strong our model can be, and depending on the needs of the user, the rectangle approach
may fail to be strong enough even if the learner finds the best hypothesis it can choose from.
While it may be obvious that rectangles as an approximation of unknown loops can only be
so strong, rigorously explaining why in a meaningful way is not as easy as one would expect.
We will first talk about the geometry of approximating loops with rectangles, and then we
will highlight why probabilistic reasoning renders geometry somewhat irrelevant.

Consider a loop L (just a curve, not a classifier) with area 0 < α ≤ 1 and a rectangleR
(just a shape, not a classifier) with nonzero area. Suppose thatR overlaps with L. Call the
area where the rectangle area and the loop area overlapΩ. One might think that the best
rectangular approximation of a loop classifier is the rectangular classifier whose rectangle
maximizesΩ. That is, one might think the rectangle on the right of Fig. 3.11 is desirable to
the rectangle on the left, but this is not necessarily correct.

To see why a smallerΩ region might be ideal, suppose that the marginal distribution
is a bivariate normal density7 with a small variance and a mean centered in the smallerΩ
region in Fig. 3.11. That is to say, suppose the marginal distribution is such that some huge
percentage, say 99%, of the data is inside the smallerΩ region, as depicted in Fig. 3.12.
Given the bivariate we are considering in Fig. 3.12, compare the twoΩ regions in Fig. 3.11

and observe that the smallerΩ region is actually ideal because it covers the critical cluster of
the bivariate normal entirely and will therefore label points with 99% accuracy. Contrast

46



Figure 3.11: Two Examples of Overlapping RegionΩ

Figure 3.12: Bivariate Example

this with the largerΩ region which does not cover the critical cluster and will therefore mis-
label points 99% of the time, despite being a better approximation of the loop L.

3.4.2 Revisiting the Knowledge Specturm

Recall in Fig. 3.2 that we wanted to try to construct various learning settings in which the
assumptions necessary to learn in a given setting are progressively weaker as we move along
the spectrum. In the realizable setting, we knew where the true labeling loop is in space and
the type of structure the loop has. We then relaxed the assumption of apriori knowledge
of the loop’s location. Both of these scenarios have meaningful assumptions. In the case
where we have weak knowledge of structure and no knowledge of location, the assumption
that represents our apriori beliefs is not exactly meaningful, but we will write it down for
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completeness.

Assumption 3.3 If we have reason to believe a rectangular classifier might be a viable ap-
proximation with respect to our learning goals, we are making a multifaceted assumption.
First, we are assuming there exists a hypothesis hΩ in one of the classes inFRect such that the
area outside theΩ region has low probability and that we have a reliable method to locate the
hypothesis class containing hΩ.

Wewill do some experiments with rectangular classifiers, but really, the use of thinking
about rectangles is not clear until we allow ourselves to use more rectangles than one, as we
will see in the next section.

3.5 Arbitrary Loops

In the previous section, we discussed the possibility of approximating loop classifiers with
rectangular classifiers, but what if the loop is not even remotely rectangular? What if there
are multiple loops? To put it in terms of our spectrum of knowledge, what if all we know in
advance is that the data is labeled by a loop of some kind, be it either a single loop classifier
(Definition 2.2) or a multiple loop classifier (Definition 2.4)? We need something more ex-
pressive than rectangles to handle the lack of apriori knowledge. Perhaps we can re-purpose
our previous work on rectangles. Maybe if a rectangle fails to be a decent global approxima-
tion, it could be a decent local approximation.

Call the region containing all positive instances in our training sequence ρ. Imagine we
use rectangles not to approximate the true labeling loop itself, but instead to find ρ (left
of Fig. 3.13). As we can see, the rectangle we used to find ρ is a poor global approximation
of the true labeling loop in that it might do well outside of the borders, but . However, if
we divide up the rectangle in Fig. 3.13 into a grid of smaller rectangles, we can get what
appears to be several strong local approximations. Call each smaller rectangle a cell and then
count the number of instances in the cell. If there are more positive instances than negative
instances, that cell is assigned a positive label, and vice versa.
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Figure 3.13: Locating Borders (Left) and Dividing Up Borders (Right)

3.5.1 Defining Grid Classifiers

The process we will now describe is how we might label data with what we are calling “grid
classifiers”. Defining grid classifiers in a rigorous way will require several different defini-
tions, but in essence, the main pieces of information are the values determining the border
of the grid and a systematic way of dividing up the region within the border into smaller
cells. We start with the border.

Definition 3.9 Consider a setB of four values left, right, high, low such that the four
values all exist in the interval [−0.5, 0.5] and let S be a training sequence with at least one
positive instance. Denote the set of positively labeled instances in S as S+. We say that an
instance x, be it labeled positive or negative, is inside the borderB if x satisfies

(left ≤ x1 ≤ right) AND (low ≤ x2 ≤ high)

where left is the x1 coordinate of the leftmost positively labeled instance, right is the x1 co-
ordinate of the rightmost positively labeled instance, high is the x2 coordinate of the topmost
positively labeled instance, and low is the x2 coordinate of the bottommost positively labeled
instance. Formally, if xij is the jth coordinate of the ith positively labeled instance, then

left = min
1≤i≤|S+|

(xi1) right = max
1≤i≤|S+|

(xi1) high = max
1≤i≤|S+|

(xi2) low = min
1≤i≤|S+|

(xi2).
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Notice that we have not mentioned the center of the border. In the previous sections,
defining a center has been helpful in our representation of the geometric structures we have
considered. We could define the center of the border, but we would be using the values
inB to do so, and it seems rather absurd to make the above definition even longer than it
already is by introducing a center and the corresponding vertical and horizontal bounds.
Cells are similar in this respect.

Definition 3.10 Consider a border defined by some set of valuesB. We divide the region con-
tained within the border into n2 cells of identical area where n is number of divisions along
each axis. That is, if we letH = right−left

n
represent the horizontal component of a cell and

V = high−low
n

be the vertical component of a cell, then the boundary defined byB has n2 cells
of areaH ·V . We call the region within the borderB divided into n2 cells a grid. Lastly, note
that we index cells the way you would index a matrix (see Fig. 3.14).

An instance is labeled positively by a grid classifier if it is both inside the grid’s border
and inside a positively assigned cell (where cell assignment is completed during training).
Determining what cell an instance belongs to deserves its own discussion, and we will have
that discussion soon. As for cell labeling, that will be discussed later in Chapter 4. For now,
assume that we have access to a matrixG such that each entryGi,j is either 0 or 1, deter-
mining the label ofCelli,j and that we know how to determine whether an instance x is
inside a given cell. Under those assumptions, we are ready to define grid classifiers.

Definition 3.11 Given a borderB and a corresponding n × n grid matrixG, the label of
an instance x is given by the grid classifier

gB,n,G(x) =
n∑

i=1

n∑
j=1

Gi,j · 1[x∈Celli,j ]. (3.4)

Denote the border values ofCelli,j with lefti, righti, lowj, highj and then Eq. (3.4) is
formally given by

gB,n,G(x) =
n∑

i=1

n∑
j=1

Gi,j · 1[lefti≤x1≤righti] · 1[lowj≤x2≤highj ]. (3.5)
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Celln,1

Figure 3.14: Grid of n2 cells where each cell has a horizontal length right−left
n and a vertical length high−low

n

Definition 3.11 is rather obtuse, so let us describe its meaning in a bit more detail. First,
notice that we need to knowB, n, andG in order to classify an instance so even though
gB,n,G is ugly, removing the subscripts creates even uglier ambiguities. Next, observe that
the grid is defined by a sequence of vertical and horizontal values so the boolean functions
in Eq. (3.5) are just a modification of Definition 3.9 where we are now considering the bor-
ders of a single cell instead of the whole region.

We now address the issue of how to identify whether an instance belongs to a given sell.
To see how we determine the indices i, j an instance belongs to, let us first consider a one
dimensional example. Suppose we divide up a line segment over the interval [0, b] into n
evenly spaced chunks of length ℓ as shown in Fig. 3.15. Now consider a point p that exits
somewhere in the interval. If we index from 1, then p belongs to the ⌊p/ℓ⌋ + 1 chunk
(provided p ̸= nℓ). For the case where the interval is some [a, b]we account for the shift
with (p− a)/ℓ.
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1 2 · · · n− 1 n
p

Figure 3.15: Example where p/ℓ > 1 so p belongs to chunk 2

3.5.2 The Family of GridHypothesis Classes

We have previous discussed families of hypothesis classes. In this case, we sort of have a fam-
ily of families. We first need to pick a border, and then we need to pick a grid size. Once our
border and grid size has been chosen, our hypothesis class consists of all 2n2 different grid
classifiers.

Definition 3.12 For a given borderB and a grid size, we define the grid hypothesis class
HB,n to be the set of n× n grid classifiers formed using borderB:

HB,n =
{
gB,n,G : G is one of the 2n2 possible grid assignments

}
.

We can then define a family of hypothesis classes by considering allB and n choices

Definition 3.13 We defineFgrid as a set of sets representing the family of grid learners
whereFgrid is given by

Fgrid = {HB,n : B ∈ Xsq, n > 0} .

3.5.3 The End of the Apriori Knowledge Spectrum

At this point, we are almost done formulating the ideas discussed on the spectrum in Fig. 3.2.
That is, we have discussed what sort of hypotheses and assumptions are associated with
learning loops when we know the structure and location of a loop classifier, when we know
only the structure, and when we have incomplete knowledge of the structure of the loop.
We now finish our commentary on learning loops in which both structure and location are
about as unknown as unknown can be.

Assumption 3.4 If our apriori knowledge is such that our only beliefs about our data is that
it is classified by an arbitrary loop, we are assuming that there exists a hypothesis in one of the

52



classes inFgrid that is strong enough for our learning needs. Specifically, we are assuming that
we have enough data to 1) get a reliable estimate of the borderB defining the necessary grid
classifier and 2) that we have enough data to get a sufficient estimate of a grid matrixG that
achieves relatively low error.
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It does not matter beautiful your theory is. It does not
matter how smart your are. If it does not agree with
experiment, it is wrong.

Richard Feynman

4
Experiments

We have now built up hypotheses and their associated classes (or families) in the previous
chapter to describe how we might try to learn to classify loops with varying apriori knowl-
edge. In this chapter, we will outline what sort of experiments we will run to test our hy-
pothesis classes and their associated assumptions.

4.1 Overview of Experiment Procedures

We want to get a sense of how our models perform when trying to learn the loops defined
in Chapter 3. There will be some slight variation in our experiment procedures, but gen-
erally, we are interested in the sample complexity of our models and the performance as
measured by the risk of the hypotheses they return.

4.1.1 Hypothesis Classes

Before we jump into the details of experimentation, let us briefly summarize Chapter 3. We
will make use of the hypothesis classes we defined in great detail in the Chapter 3 so for the
convenience of the reader, we summarize those classes here.
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Loop Hypothesis
Square at (0, 0) Qb(x) = 1[max(|x1|,|x2|)≤b]

Square Qb,c(x) = 1[max(|x1−c1|,|x2−c2|)≤b]

Convex(ish) Rb,c(x) = 1[|x1−c1|≤b1] · 1[|x2−c2|≤b2]

Arbitrary Loop gB,n,G(x) =
n∑

i=1

n∑
j=1

Gi,j · 1[lefti≤x1≤righti] · 1[lowj≤x2≤highj ]

Table 4.1: Summary of Hypotheses

Loop Family Class
Square at (0, 0) N/A Hsq =

{
Qb : b ∈ {0.001k}500k=1

}
Square Fsq = {Hc : c ∈ Xsq} Hc = {Qb,c : b > 0}

Convex(ish) FRect = {HRect,c : c ∈ Xsq} HRect,c = {Rb,c : b1, b2 > 0}
Arbitrary Loop FGrid = {HB,n : B ∈ Xsq, n > 0} HB,n = {gB,n,G : G ∈ G}

G is set of all 2n2 grids

Table 4.2: Summary of Hypothesis Classes/Families

4.1.2 Experiments in the Realizable Setting

In Section 3.2 we defined the concentric square hypothesis class, a finite class that is real-
izable under Assumption 3.1. Conducting experiments in the realizable setting gives us a
sense of what the optimal performance of a learner both from a sample complexity and an
accuracy perspective. In that sense, our experiments in the realizable setting exist not to
“see what happens” but to give us a benchmark to compare to. In particular, we would like
to compare how the sample complexity and risk performance weakens as we remove bias
from our hypothesis classes. To that end, we begin our experiments in the realizable setting
by first estimating the sample complexity of training ERM learners on the hypothesis class
Hsq. We will estimate the sample complexity using a binary search heuristic comprised of
two procedures: empirical PAC verification and the search procedure itself.

Recall fromDefinition 1.11 that we say a hypothesis classH is PAC learnable via ERM if
there exists a sample size nH(ϵ, δ) such that the true risk of the ERM hypothesis LD(hs) is
at most ϵwith at least 1− δ confidence. In order to achieve 1− δ confidence, then for every
N trials we run, at most δN of them should violate our risk tolerance ϵ. Of course, δN is
not necessarily an integer, hence we round up to ⌈δN⌉.
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Algorithm 1 Empirical PAC Verification
1: Fix some true labeling function f .
2: Generate a sample S of n instances.
3: Run the ERM algorithm on S.
4: Record whether LD(hS) exceeds our choice of ϵ.
5: Repeat overN total samples.
6: Check if at most ⌈δN⌉ samples violated our error tolerance ϵ.

Remark 4.1 Algorithm 1Will be useful in multiple experiments, hence the generic nature of
the Pseduo code. With respect to our experiments pertaining toHsq , the true labeling function
will be some square classifierQb at the origin and our ERM algorithms will be those listed in
Section 4.3.1.

Getting back to estimating sample complexity, we can use Algorithm 1 by running it on
varying sample sizes as illustrated in Algorithm 2.

Algorithm 2 Estimating Sample Complexity
1: Let f be the same labeling function as used in the empirical PAC verification.
2: Let n′ = n− 1where n =

⌈
ln(|H|/δ)

ϵ

⌉
.

3: Over many trials, do the following:
4: while empirical PAC learnability holds do
5: Repeat the empirical verification process using a sample of size n′.
6: Use binary search to decrease n′.
7: end while
8: Record n′ and start another trial.
9: return the average value of n′ over all trials.

Let us take a second to understand Algorithm 2. First, we set n =
⌈
ln(|H|/δ)

ϵ

⌉
because

Proposition 1.1 (realizability of finite hypothesis classes) tells us that a finite, realizable hy-
pothesis classH has sample complexity of at most n =

⌈
ln(|H|/δ)

ϵ

⌉
. Second, let us discuss

the binary search component. We are looking for the first instance where empirical PAC
verification fails and we know that it succeeds if it is given n =

⌈
ln(|H|/δ)

ϵ

⌉
instances. Hence,

we can set n′ = n − 1 as our initial upper bound, 1 as our initial lower bound and then
binary search can quickly find a sample size where PAC learning happened to fail. That is,
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if PAC learning succeeds, we cut the sample size in half and try again whereas if it fails, we
add 50% of our sample size and try again. Repeating this process until low ≥ high acts as
a heuristic to estimate the true sample complexity.

We can then repeat the entire heuristic many times over and use the average as our best
estimate. In particular, if we interpret the value where empirical PAC learning fails as ran-
dom variable (which it is, albeit a convoluted one), then the law of large numbers7 tells us
that as we repeat the binary search process over many trials, we should get closer and closer
to the true sample complexity.

To conclude our overview of experiments in the realizable setting, recall that we men-
tioned that in addition to sample complexity estimates we would like to get a sense of the
risk values ERM learners return. To see how well the ERM learners learn, we can simply
keep a growing list of the risk values when running Algorithm 1. Then, when Algorithm 1
terminates, we can produce histograms of said risk values, giving us a sense of the distribu-
tion of the random variable1 LD(hS).

4.1.3 Experiments in the Agnostic Setting

Experiments in the agnostic setting are slightly different than those in the realizable set-
ting in that it does not make sense to try to estimate the sample complexity. Why? In the
agnostic setting, there is a limit to how accurate our model can be regardless of the size of
the sample. Thus, it would be more appropriate to estimate the complexity of uniform
convergence (which is dependent on sample size), but that would require checking each hy-
pothesis in the chosen class, and our agnostic classes are infinite. Rather than estimate the
sample complexity using Algorithm 2, we will record average risk values over many different
sample sizes. While this does not act as a direct substitute for Algorithm 2, it will give us
information about the capabilities of our models.

1The true risk of a hypothesis is defined as an expected value. Note, though, that the ERM hypothesis will
differ from sample to sample. In that sense, true risk is both an expected value and a random variable at the
same time.
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4.2 Data Generation

In order to generate data, we need a marginal distributionDXsq that dictates how points are
distributed throughoutXsq, regardless of the true labeling function. We make the choice
to use the uniform distribution forDXsq and we make this choice for two reasons. First, it
lends for a very pleasant geometric interpretation of probability as the probability of sam-
pling a point in a region of space is just the area of the space itself.

Second, if our apriori knowledge is such that we have no knowledge of the true under-
lying marginal distribution, we are forced to assume a uniform distribution. Assuming
otherwise would be inducing bias into our model that could be misplaced. In practice, if
one does have some knowledge of the true underlying marginal distribution, they could
use that to modify the algorithms we introduce in the coming sections for better results. Fi-
nally, to generate data we need a labeling function. Labeling functions will change based on
the learning setting we are examining, and we highlight this in greater detail in the coming
sections.

4.2.1 Square Loops

We represent the scenarios in which we have apriori knowledge of the true labeling loop’s
structure with square classifiers. Recall that in Definition 3.4 we definedHsq to be finite.
The purpose of this is to make use of the result that the sample complexity of finite hypoth-
esis classes in which the realizability assumption holds has a known upper bound when
using ERM. Consequently, if our data generation is such thatHsq is realizable, then we can
use ERM and search for a lower bound of the sample complexity ofHsq. Therefore, when
generating data forHsq, we randomly distribute points inXsq and then label them accord-
ing to some square classifier centered at the origin with a bound b ∈ {0.001k}500k=1, forcing
realizability to hold.

For square classifiers in which the location of the center is unknown prior to training,
data generation is quite similar. In this case, though, we are generating labels for the data
distributed uniformly inXsq with a labeling function inFsq.
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4.2.2 Convex(ish) and Arbitrary Loops

Data generation for loops with structure that is more complex than squares is not all that
different than what we have previously described in that we are still distributing points
throughXsq first and applying a label to each point second. The difference now is that we
need to choose what sort of functions to use to label points. For the sake of time, we will
use a folium curve for both the convex(ish) and arbitrary loop settings. The folium curve
given by Eq. (2.1) can produce a wide variety of different shapes given different choices of a
and b, allowing us to test different kinds of loop structures with minimal implementation
cost. In particular, as we make different choices of a and bwe can get closer or further away
from a convex shape:

Figure 4.1: Folium Loops From Various Parameter Choices
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Observe that the choice to use a folium curve to label data for our experiments in the
convex(ish) and arbitrary loop settings has a subtle but important caveat. Assumptions
3.3 (convex loops) and 3.4 (arbitrary loops) are associated with different levels of apriori
knowledge and therefore should be used for different types of data. The point of using a
folium curve for both settings is that a folium curve is rich enough that we can progressively
morph it to be more or less appropriate for either assumption, as shown in Fig. 4.1.

4.3 Training Algorithms and Risk Evaluation

ERM is typically what one would use to train a machine learning model. In the case of
learning loops, we will be constructing our own algorithms that attempt to minimize risk as
much as possible, but do not necessarily achieve zero empirical risk—and there is reason for
this. Given that the whole point of this work is to examine what happens as we construct
models with less and less inductive bias, achieving zero empirical risk could lead to over-
fitting in some of our learning schemes. In the following sections, we will discuss how we
plan to train for each of the learning settings we have discussed throughout this work.

4.3.1 Training Algorithms for Concentric Squares at the Origin

As discussed in Section 4.1.2, we can empirically verify PAC learnability by randomly gen-
erating data, training on the data over many trails, and confirming that a pre-determined
number of trials reaches a specified accuracy goal. What we did not discuss in Section 4.1.2
is how to train.

In the realizable setting with a finite hypothesis class, ERM could be as simple as looping
through the hypothesis class, calculating the number of instances a given hypothesis mis-
labels, and iterating until we find a hypothesis with zero mislabeled sample points. Notice,
though, there might be multiple hypotheses that achieve zero empirical risk. If that is the
case, how do we know which one is best? To answer this question, we will introduce three
different ERM algorithms. The first algorithm we will consider is what we call the “Posi-
tive” algorithm because it biases towards positive labeling.

Observe that Positive ERM returns the square classifier with the largest bound b for
which empirical risk is minimized. Since the internal area within the square is all labeled
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Algorithm 3 “Positive” ERM
1: Initialize the bound b to be the largest bound our hypothesis class allows.
2: while empirical risk is not minimized do
3: if Qb correctly classifies entire sample S then
4: returnQb

5: else
6: Decrement b to next largest bound.
7: end if
8: end while

positively, by making the returned hypothesis square as large as possible, we are biasing to-
wards positive labeling. Biasing towards negative labeling is similar; when we bias towards
negative labeling we return the smallest square classifier with zero empirical risk.

Algorithm 4 “Negative” ERM
1: Initialize the bound b to be the smallest bound our hypothesis class allows.
2: while empirical risk is not minimized do
3: if Qb correctly classifies entire sample S then
4: returnQb

5: else
6: Increment b to next smallest bound.
7: end if
8: end while

Let us now think about why upper and lower bounds for the size of b are useful in the
training process. Consider a sample like the one in Fig. 4.2. Let the point x+ be the in-
stance in the set of positively labeled instances that is furthest from the true labeling loop’s
center. 2 Let x− be the point in the set of negatively labeled points that is closest to the cen-
ter of the true labeling loop.

Clearly, any hypothesis existing in between x+ and x− achieves zero empirical risk for
the given sample, but what if we increase the sample size? Unless one of the instances x+,x−

is right on top of the true classifier, returning a hypothesis near x+ or x− could lead to over-
2At the moment, the center of the true labeling loop will always be the origin because we are still dis-

cussing the learning setting in which we fix functions at the origin.
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Figure 4.2: Gap Example

fitting. To try to avoid this, we can instead return the hypothesis exactly in between x+ and
x− using the “Midpoint” ERM scheme (which we will frequently refer to as “Mid”).

Algorithm 5 “Midpoint” ERM
1: Let bhigh be the bound that defines the hypothesis returned from the “Positive Bias”

scheme.
2: Let blow be the bound that defines the hypothesis returned from the “Negative Bias”

scheme.
3: Define bmid to be bound that is closest (or equivalent) to the midpoint between blow

and bhigh.
4: return the hypothesis square defined by bmid.

4.3.2 Risk Evaluation for Concentric Squares at the Origin

Risk evaluation is quite pleasant for concentric squares at the origin due to the fact that
we are using the uniform distribution as the marginal distribution. Since the marginal is
uniform and the true labeling square, denoted by f , and our hypothesis square, denoted by
h, have the same center, the probability of mislabeling an instance is just the the area where
f and h disagree. We can easily calculate that area with |A(f) − A(h)|whereA(f), A(h)
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are the respective areas of f, h.

4.3.3 TrainingWhen Structure is Known, but Location is Not

Learning to classify data labeled by concentric squares at the origin exploits the knowl-
edge of location. In this section, we examine how we can learn with slightly weaker apriori
knowledge. Namely, we now learn under Assumption 3.2 where we suspect the true label-
ing function is a square but we do not know where that square is in space. To handle our
lack of knowledge of location, we introduce methods for estimating the center of a loop.

Averaging Over the Positive Instances

One method we can use to try to estimate the center is to average over the positive instances.
That is, if we have some set S+ of positive instances from S, we can estimate the center
with

ĉ = (ĉ1, ĉ2) =

 1

|S+|

|S+|∑
x1∈S+

x1,
1

|S+|

|S+|∑
x2∈S+

x2

 . (4.1)

The reason we average along the positive instances and not the entire data set is that aver-
aging along the entire data set gives us an estimate of the mean of the marginal distribution,
and that mean might not be meaningful to us. For instance, if the marginal distribution is
uniform (as it is in our experiments), then we should expect the average along all instances
to approach (0, 0) as the sample size increases, regardless of where the true center is. By
averaging along the positive instances, we are limiting are focus to the loop itself without
knowing where the loop is.

One problem with this approach is that it is subject to failure if the marginal distribution
is such that sampling a large number of positive instances is unlikely. Suppose, for instance,
that the true labeling loop is a square at the origin with a bound b = 0.01 and that the
marginal distribution is uniform. The probability of sampling a positive instance is then
0.022 = 0.0004 and therefore, even in a large sample, the number of positive instances
will be quite small (or zero, even), leading to a poor empirical estimate. One way we can
attempt to work around this issue is to exploit our apriori knowledge, as discussed in the
next section.
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Estimating the Center Using Extreme Points

We are currently operating under the assumption that the true labeling function is given
by a square classifier. It then follows that the the positive point furthest to the left gives us
our best possible estimate of the left border of the square classifier. Similarly, the rightmost
positive gives us an estimate of the right border of the square classifier, as does the top most
point for the top border, and the lowest point for the bottom border; we can use these ex-
treme points to get an estimate of the center of the labeling loop.

Algorithm 6 Extreme Points Estimate (Positive Version)
1: Let S+

x1
be the set of x1 values of the positive instances in our sample S.

2: Let S+
x2
be the set of x2 values of the positive instances in our sample S.

3: Define Top = max(S+
x2
)

4: DefineBottom = min(S+
x2
)

5: Define Left = min(S+
x1
)

6: DefineRight = max(S+
x1
)

7: Let ĉ1 = Right−Left
2

and ĉ2 = Top−Bottom
2

.
8: return ĉ = (ĉ1, ĉ2)

The astute reader may question whether Algorithm 6 has made any progress over aver-
aging along the positive instances. That is, we said that the problem with averaging along
the positive instances is that it can fail when the number of positive instances is small. If the
number of positive instances in our sample is small, how can we be sure that Top,Bottom,
Left, Right are actually close to the edges of the square classifier? For small sample sizes,
we can not be sure, but that does not mean we have not made progress. Recall that in the
positive, negative, and ERM algorithms we used upper and lower bounds to get a better
estimate by taking their average. We can do the same here. We first need to find the nega-
tive instances closest to the square classifier, and we use the extreme points found in Algo-
rithm 6 to do so.
Once we have estimates from the extreme negative and extreme positive points, we can

take their average (Algorithm 8). We do this average process because the extreme points
may not actually be that close to the border, but their average might. For instance, suppose
that by chance the positive and negative points corresponding to the left edge of the border
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Algorithm 7 Extreme Points Estimate (Negative Version)
1: Let S−

x1
be the set of x1 values of the negative instances in our sample S.

2: Let S−
x2
be the set of x2 values of the positive instances in our sample S.

3: Let Top+, Bottom+, Left+, Right+ be the extreme points found in Algorithm 6.
4: Define Top(S−

x2
) = min

({
x2 ∈ S−

x2
: x2 ≥ Top+

})
5: DefineBottom(S−

x2
) = max

({
x2 ∈ S−

x2
: x2 ≤ Bottom+

})
6: Define Left(S−

x1
) = max

({
x1 ∈ S−

x1
: x1 ≤ Left+

})
7: DefineRight(S−

x1
) = min

({
x1 ∈ S−

x1
: x1 ≥ Right+

})
8: return ĉ = (ĉ1, ĉ2) =

(
Top(S−

x2
)−Bottom(S−

x2
)

2
,
Right(S−

x1
)−Left(S−

x1
)

2

)

are each roughly 0.1 units away from the border. When we average between them, we will
be right on the border’s edge, thereby giving us a better estimate of the center.

Algorithm 8 Extreme Points Estimate (Mid Version)
1: Let Top+, Bottom+, Left+, Right+ be the extreme points found in Algorithm 6.
2: Let Top−, Bottom−, Left−, Right− be the extreme points found in Algorithm 7.
3: Define Topm = Top++Top−

2

4: DefineBottomm = Bottom++Bottom−
2

5: Define Leftm = Left++Left−
2

6: DefineRightm = Right++Right−
2

7: return ĉ = (ĉ1, ĉ2) =
(
Topm−Bottomm

2
, Rightm−Leftm

2

)
Once we have center estimates, we can use modified versions of postive, negative, and

mid ERM schemes. The modifications we would need to make are as follows. In the pre-
vious section, we had finitely many bounds to choose from. In this case, we have infinitely
many so incrementing by some fixed value does not make sense. Instead, we can just skip to
the next appropriate bound after mislabeling an instance. For example, if we are running
positive bias and we misclassify a negative instance, we can skip from where we currently
are to being right next to the negative instance we got wrong such that it is now labeled cor-
rectly.

One other change is that in the realizable setting we used a while loop because the realiz-
ability assumption guarantees zero empirical risk (and therefore, termination of the loop).
In this case, a while loop could run forever so we simply loop through the entire sample,
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jumping our bound from point to point as needed.

4.3.4 Risk Evaluation for Generalized Squares

Evaluating risk for generalized squares is much harder than one might expect it to be. In
order to understand why, we will need several new definitions. We begin with the area of
the true labeling loop insideXsq. Consider the two different labeling squares depicted in
Fig. 4.3. Notice that the true labeling square, which we will denote as f , in the left example
is entirely contained withinXsq whereas in the second example, only some of f is inXsq.

Figure 4.3: Two Examples ofAf . If f entirely inXsq (left plot) thenAf equivalent to area of f . Otherwise (right plot)
Af less than area of f .

In order to calculate the risk of an arbitrary square classifier, we will first needAf , the
area of the label function f contained withinXsq.

Claim 4.1 Given a square classifer that acts as the true labeling function f , we say that the
areaAf is the area of the square formed by f contained withinXsq and we findAf with

Heightf ·Widthf = (Topf −Bottomf ) · (Rightf − Leftf )

where (Topf −Bottomf ) · (Rightf − Leftf ) is given by(
min(0.5, c2 + b)−max(−0.5, c2 − b)

)
·
(
min(0.5, c1 + b)−max(−0.5, c1 − b)

)
and c1 and c2 are from the (c1, c2) pair describing the center of f and b is the bound as de-
fined in Definition 3.2.
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Proof. From inspection, it should be clear that the areaAf will always be contained in some
rectangle. Thus, to findAf we simply need to determine the height and width of the
aforementioned rectangle. Given some areaAf , we find the height by subtracting the
highest point Topf from the lowest pointBottomf . We define Topf to be
min(0.5, c2 + b) because if the top of f is outside ofXsq then the highest point inXsq is
simply the top ofXsq itself. Similar commentary aboutBottomf , Leftf , andRightf

completes the proof. □

The next step in understanding the true risk a square hypothesis is definingAh, the area
of the hypothesis contained insideXsq.

Definition 4.1 We denote the area of a square hypothesis h that is contained withinXsq to
beAh. We findAh in exactly the same way asAf . That is,

Ah = Heighth −Widthh.

We now need to think about whereAf andAh overlap, as that is one of two areas where
a square classifier has zero risk. In particular, consider the different regions highlighted in
Fig. 4.4.

Figure 4.4: The Four Regions Needed to Evaluate Risk
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As we have done before in Section 3.4.1, call the area whereAf andAh overlap theΩ
area. The areasAf \ Ω andAh \ Ω are respectively the region inAf but not inΩ and the
region inAh but not inΩ. Finally, the last regionXsq \ (Af ∪ Ah) is everything that is
outside of bothAf andAh. We can see where f and h disagree in Table 4.3.

Region f(x) h(x)
x ∈ Ω 1 1

x ∈ Xsq \ (Af ∪ Ah) 0 0
x ∈ Af \ Ω 1 0
x ∈ Ah \ Ω 0 1

Table 4.3: Summary of Four Regions inXsq

Because we chose to make the marginal distributionDXsq be uniform, it then follows
that the probability of hmislabeling an instance is the area (Ah \ Ω) ∪ (Af \ Ω). We can
find this region with (Af − Ω) + (Ah − Ω).

Remark 4.2 We abused notation a bit in our discussion about risk for arbitrary squares.
When referring toAf , Ah,Ω we are sometimes referring to a set of points forming an area,
sometimes referring to the numerical value of the area itself. In general, if we use arithmetic
operations the reader may assumeAf , Ah,Ω are values and that when we use set operators
like∪, \ we are referring to a set of points.

4.3.5 Training and Evaluating Rectangular Classifiers

The algorithms necessary for training rectangular classifiers have actually already been dis-
cussed when we constructed algorithms to find extreme points. In particular, recall the
points Top,Bottom,Left, Right from Algorithm 6. A rectangular classifier biased to-
wards negative labeling will simply classify everything that is in betweenLeft, Right and
Top,Bottom as positive, otherwise negative.

As for risk, the whole point of generating data with a uniformmarginal distribution
is that area is equivalent to risk and more importantly, that for nice shapes (squares), area
is easy to calculate. Now that our true labeling loops have more complex structure, the
only way to get an exact area calculation is through integration. Ultimately, though, if we
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had any intention of integrating then we could have explored nonuniform data from the
beginning. Hence, we are not going to get an exact value for the true risk of a rectangular
classifier (or a grid classifier, for that matter). Instead, we will construct a meaningful test
set comprised of a set of n2 points evenly spaced out like a grid. Our risk estimate will then
be the ratio between mislabeled points and all points.

4.3.6 Training and Evaluation of Grid Classifiers

In order to train grid classifiers, we first need to find the borders discussed in Definition 3.11,
but we have actually already done this via rectangular classifiers. Rectangular classifiers are
precisely the border we are looking for so we use the training scheme for rectangular classi-
fiers when searching for a border to form our grid. As for the grid itself, there are multiple
mini-procedures we need to discuss that occur during Algorithm 9.

Algorithm 9 Scan Grid
1: Initialize a hash tableH to be empty.
2: Let S be our sample,B our border,G our untrained grid matrix.
3: for each instance x ∈ S do
4: if x ∈ B then
5: Locate the indices i, j such that x ∈ Gi,j

6: if (i, j) /∈ H then
7: add (i, j) toH
8: end if
9: end if
10: end for
11: returnG, H

Wewould like the grid to be as expressive as possible without overfitting. To make the
grid more expressive, we increase the number of cells using binary search, where a grid with
empty cells is considered a failure and leads to decrementing and a grid with no empty cells
results in incrementing. To avoid overfitting, we require that no cell is empty when the
search terminates. In order to know whether we have any empty cells, we train each grid
while searching for the right number of cells. Meaning, suppose that the number of cells
is fixed to be n2. To check if a cell is empty, we would have to loop through all instances
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anyway, so why not train the grid matrix of size n2 at the same time? We achieve both with
Algorithm 9. Namely, if the hash recording all the indices we have seen before contains n2

index pairs, then we know there are no empty cells and we can increment n. Otherwise, our
grid is too expressive and we must decrement n.

As for cell labels, that can be done during Algorithm 9 as well. Let the grid matrixG
be initialized to all zeroes. Now consider an instance x located atGi,j in the grid. If x is a
positive instance, we add one to the count corresponding toGi,j , otherwise we subtract
one. When our scan is complete, assuming that there were no empty cells, any cell with
count 0 had equally many positive and negative instances and is labeled by a coin flip. All
other cells are labeled positive if their count is positive, negative otherwise.

Now that we have discussed the basic ideas behind our experiments from training to risk
evaluation, we are finally ready to obtain some results.
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If we knew what it was we were doing, it would not be
called research, would it?

Albert Einstein

5
Results and Discussion

Everything we have been building up to has been in the spirit of getting closer to answering
the questions, “Howmuch bias is enough? What is the minimal amount of information
we need to classify nonlinear data?” Have we answered these question? Well, we consider
results without proof a nonanswer, so no, we have not answered the motivating questions.
We have, however, obtained empirical results that might warrant future theoretical analysis.

In the following sections, we run the various algorithms described in Chapter 4 and in-
spect why their behavior agrees or disagrees with our initial expectations. Ultimately, we
found that grid learners are completely capable of classifying nonlinear data in a bounded
region with a uniformmarginal distribution. Whether the strength of grid learners will re-
main if we extend to nonuniform distributions and unbounded learning spaces is not yet
clear.

5.1 Concentric Squares at Origin

Not surprisingly, the sample complexity estimates of the finite, realizable hypothesis class
Hsq were quite low. After running 1000 trials over several different ϵ and b values with a
confidence choice 1− δ = 0.9, we obtained the estimate plots shown in Fig. 5.1.
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Notice what happens to the sample complexity of the ERM algorithms that are biased
towards one of negative or positive labeling. When we make the bound of the true label-
ing function small, most ofXsq is associated with a negative label, so we should expect the
negatively biased ERM scheme to have a smaller sample complexity (and it does). Similarly,
when we make the bound large, most ofXsq is associated with a positive label so we should
expect the positively biased ERM scheme to have a lower sample complexity (and it does).

Figure 5.1: Sample Complexity Estimates for ERM Learners Choosing Classifiers fromHsq

There are few outcomes that seem unusual at a glance, but are actually perfectly normal
with further inspection. In particular, notice the dips in the plots associated with b = 0.48

and b = 0.1. The values b = 0.1 and b = 0.48were the first values where we saw the
bias induced into our Positive/Negative ERM schemes begin to outperform theMidpoint
scheme. Does it seem reasonable that these are the values where biasing one way or the
other makes a difference? Yes, it does, but the reason may not clear if we do not write out
the arithmetic.

In the case where b = 0.1, the area of the true labeling square is (2b)2 = 0.04, implying
that 96% ofXsq is negatively labeled. Notice that the negative ERM sample complexity
drops at risk tolerance 0.04, the same area as the true labeling square. In other words, when
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our risk tolerance is forgiving enough and the bound is small, the negative ERM learner
will have met our risk tolerance without training on any data at all. Similar remarks apply to
the positive ERM scheme.

When the bound is b = 0.48, the area of the true labeling square is 2b2 = 0.9216 and
therefore, about 8% of all ofXsq is negatively labeled. Since the positive ERM learner is
initialized to start its search by labeling everything positively, the bound b = 0.48 implies
that the initial hypothesis chosen by positive ERM violates obeys risk tolerance for values
above 0.08 by default. And as we can see, when b = 0.48, the sample complexity of positive
ERM plummets at ϵ = 0.08, as we would expect it to.
A few paragraphs back, we mentioned that b = 0.48, 0.1were the first values for which

the bias induced into the positive/negative ERM algorithms begin to take effect, implying
that there are other such values. Some readers may wish to know if we can visualize what
happens as we slide the value of b. That is, can we display similar information to Fig. 5.1
without plotting many, many different plots? Yes! If we fix a bound and run Algorithm 1
(empirical PAC verification) over many different sample sizes, we can produce a heat map
(Fig. 5.3) that communicates howmuch risk we might expect when training.

Remark 5.1 We use different colors on the heat maps to denote differing scales. If we force
each map to have the same scale, it is harder to see the variability on the midpoint map.

Figure 5.2: First of Three Heat Maps ForHsq Obtained Using 1000 Trials
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Figure 5.3: Second and Third of Three Heat Maps ForHsq Obtained Using 1000 Trials

Notice that at a sample size of 20, we are generally achieving an average risk of 0.05 or
lower across all ERM algorithms, despite the fact that our sample complexity plots have a
values of about 50 for a risk tolerance ϵ = 0.05. We might wonder, then, do the heat plots
and the sample complexity estimates contradict one another? No. The important detail
here is that the heat plots are showing an average risk value whereas the sample complexity
estimates require risk values to occur at a certain frequency to meet our confidence choice.

Between the biased induced into our ERM algorithms and the hypothesis classHsq, the
fact that Assumption 3.1 (true labeling function is indeed a square at the origin) holds in
these experiments results in frequently obtaining low or even zero risk hypotheses (even in
smaller sample sizes). Hence, when we compute the average, we are getting a value that im-
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plies more strength in the ERM learners than is actually there. We can see the importance
of the confidence choice and how it can create a discrepancy between the heat map plots
and the sample complexity estimates by plotting a histogram that shows the distribution of
risk values found by Algorithm 1.

Figure 5.4: Risk Values Obtained When Training On Samples of Size 20 Generated byQ0.3

As expected, for a bound of 0.3 (one of the bounds used in Fig. 5.6) the average risk
seems to be roughly1 0.05. Notice, though, that if we do a quick sum2 of the number of
risk values at or below 0.05, we get conservatively get 250+150+125+100+100 = 725

out of 1000 trials for the positive ERM values. Recall that in our sample complexity esti-
mates, we set our confidence parameter to be δ = 0.1, meaning we need at least 900 of the
1000 to have a risk value of 0.05 or below so clearly, we need a larger sample size than 20 to
achieve the PAC learning threshold. Thus, the discrepancy between the heat plots and the
sample complexity estimates is not an issue.

Before we move on from the realizable setting, let us briefly turn our attention to the risk
values of the mid ERM algorithm. The heat map for the mid ERM algorithm has lower av-
erage risk values than either the positive or negative ERM algorithms. Moreover, the sample
complexity is much lower for mid ERM than positive or negative. We might wonder, then,
does mid ERM achieve zero risk more often than positive and negative ERM do?

Counterintuitively, mid ERM does not necessarily achieve 0 risk more often than pos-
itive or negative ERM. In the plots in Fig. 5.5 are results from an experiment with 1000
trials of samples of size 20 like before. Only this time, the mid values are such that there are

1We checked this with the computer, but one can confirm by quickly eyeballing the distribution.
2Again, this can be confirmed by eyeballing the height of the bins.
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fewer zero risk occurrences (roughly 150) in the mid ERM results than there are in positive
or negative ERM (roughly 200).

Figure 5.5: Risk Values Obtained When Training on Samples of Size 20 Generated byQ0.3

The reason mid ERM achieves lower average risk value and lower sample complexity
while simultaneously achieving fewer zero risk hypotheses has to do with the hypotheses
chosen from positive and negative. In the histograms in Fig. 5.5, we see that positive and
negative ERM both achieve about 200 zero risk hypotheses. The trick is that they do not
achieve these hypotheses on the same sample.

Since the midpoint algorithm returns a hypothesis whose value is dependent on the val-
ues of positive and negative ERM hypotheses, if one and only one of them achieves a zero
risk hypothesis, mid ERM is guaranteed (in that instance) to achieve a nonzero hypothesis.
Other than that, mid ERM behaves exactly as we would expect, which is to say that it is a
stronger learner than positive and negative ERM are. Even though mid ERM does not nec-
essarily achieve zero risk as often positive or negative ERM, the variability of the risk values
is much lower in the mid ERM distribution (notice that the worst risk mid ERM achieved
was about 0.1whereas the worst risk positive/negative ERM achieved was about 0.2).

5.1.1 Mid ERM and Support VectorMachines

Before we move on to the next learning setting, let us take a second to examine how strong
Hsq is in combination with mid ERMwhen Assumption 3.1 holds.
In our sample complexity plots, we found that when training on data generated byQ0.3

we found that 90% of the time, mid ERM achieved 99% accuracy with a sample size as
small as 100 instances. Even at 50 and 25 instances mid ERM is still at least 96% accurate
90% of the time. Point being, if one did not know they were looking for a square, it would
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not be clear at all from the samples depicted in Fig. 5.6 that the true labeling function is
indeed a square.

Figure 5.6: Samples of Size 25 (top), 50 (middle) 100 (bottom)

While it is true that the bias induced intoHsq is extreme, the positive and negative ERM
schemes are not as strong as mid ERM, as we have discussed at length. The reason that mid
ERM is so much stronger is that mid ERM is achieving a support vector machine10, which
should be cause for excitement given that the data is nonlinear and we are not transforming
it. To see why mid ERM is an SVM, first recall that positive and negative ERM provide us
with upper and lower bounds for the hypotheses we can pick. Thus, by taking their average,
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we force a maximization of the margin between positive and negative points in the learning
space. Another interesting point is that of linear separability. Hard-SVMs require data to
be linearly separable, and certainly our data is not. How is, then, that we achieve a hard-
SVM? Square classifiers actually act as a kernel. If we project our data into 3 space using the
constraintmax(|x1|, |x2|) definingQb then we achieve data that is linearly separable.

Figure 5.7: Projection of Data Into 3 Space

Imagine slicing the pyramid in Fig. 5.7 with a plane parallel to the x1, x2 plane. The x3

value of the slice corresponds to the bound in the conditionmax(|x1|, |x2|) ≤ b. Thus,
by slicing the pyramid, we separate all positive instances (those below/on the slice) from all
negative instances (those above the slice).

5.2 Arbitrary Square Classifiers

We should expect the sample complexity of square classifiers to increase once we remove
our apriori knowledge of the true labeling loop’s location—and indeed it does. As shown
in Fig. 5.8, where we used the same number of trials (1000) and confidence choice (δ =

0.1) as we did in our experiments in Section 5.1, the sample complexity is much higher
than that of square classifiers fixed at the origin.
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Figure 5.8: Sample Complexity Estimates After Estimating Center With Algorithm 6 (Top Left), Algorithm 7 (Top Right),
Algorithm 8 (Low Left), and Averaging Along Positive Instances (Low Left)

There are several points of interests in Fig. 5.8. First and foremost, it should be clear that
estimating the center dominates the sample complexity. We can be confident of this because
the ERM schemes all have approximately the sample sample complexity estimates and the
only commonality among all three is center estimation. The second most interesting detail
in our estimates is that averaging along the positive instances does not provide a reliable
estimate of the center. That is, the error attributed to the poor center estimate is such that
we consistently fail to obey any risk tolerance at or below ϵ = 0.15.

To get a sense of the performance of the estimate obtained by averaging along the pos-
itive instances, we conducted a mini-experiment in which we generated many different
samples and estimated the center using all four methods several times over. The averages of
the results are summarized in Table 5.1 and we can see that the method of averaging along
the positive instances seems to be about an order of magnitude less precise than the other
methods.
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Sample Size + Extreme Pts. − Extreme Pts. Mid Extreme Pts. Avg Along+

100

[
−0.000374
−0.000318

] [
−0.000210
−0.000033

] [
−0.000292
−0.000175

] [
0.001164
0.000384

]

1000

[
−0.000049
−0.000000

] [
−0.000016
0.000030

] [
−0.000032
0.000015

] [
−0.000207
−0.000187

]

10000

[
−0.000002
0.000005

] [
−0.000003
0.000007

] [
−0.000002
0.000006

] [
0.000038
0.000025

]
Table 5.1: Summary of Center Estimates (up to 6 digits) For True Center

[
0
0

]
Over 1000 Trials of Varying Sample Sizes

5.2.1 Violating Assumption 3.2

What happens if the true labeling squareQb,c is such that the true center is insideXsq but
part of the square is outsideXsq? Consider, for instance, the square classifierQ0.4,(0.4,0.2)

centered at (0.4, 0.2)with a bound 0.4. Such a classifier will generate rectangular data,
such as the sample in Fig. 5.9.

Figure 5.9: Sample of 5000 Instances Labeled ByQ0.4,(0.4,0.2)

Our original assumption about squares (Asm. 3.2) with unknown centers is simply that
the true labeling loop is centered somewhere inXsq. Said assumption does not say anything
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Figure 5.10: Sample Complexity Estimates ForQ0.4,(0.4,0.2) Data With Confidence Choice δ = 0.1

about squares that generate rectangular data. If our assumption was well formed, then the
ERM algorithms we have constructed should be able to learn by choosing hypotheses from
Fsq. We can easily see, though, that is not the case.

When we plot sample complexity estimates (Fig. 5.10), we can see that our search termi-
nates at the search limit 999 and stays there until there is an immediate drop, implying that
learning fails due to the geometry of the data.

We can get a sense of why this failure occurs by examining the borders of the data. In
particular, we know that the left most point is at least 0.4 − 0.04 = 0 and the right most
point is at most 0.5. Similarly, the top most point is at most 0.5 < 0.2 + 0.4 and bottom
most point is at least 0.2− 0.4 = −0.2Hence, for samples with points near the border, the
center estimate will be roughly

(
0+0.5

2
, 0.5−0.2

2

)
= (0.25, 0.15). Ultimately, this misguided

estimate is the root of the poor generalization. When negative ERM starts at the wrong cen-
ter, it will inch forward, trying to correctly label as many positive instances as possible. In
doing so, it will eventually settle at around 0.25. If we calculate the true risk of the classifier
Q0.25,(0.25,0.15) we will get 0.09999..., which agrees perfectly with the sample complexity
estimates. PAC learning fails when we try to pick a risk tolerance less than 0.1 because that
is the best we can do.

5.3 Rectangular Classifiers

Admittedly, there is not much to discuss about rectangular classifiers. In short, if the true
labeling loop is roughly rectangular (or only represents a very small fraction of the learning
space), then rectangular classifiers provide a decent approximation (and otherwise they do
not). We can provide a quantitative explanation of what “decent” means by examining a tri-
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folium curve. Consider, for instances, three different parameter choices of the curve such
that the first choice is a convex shape, the second is no longer convex but the rectangular ap-
proximation is small enough relative to the learning space that the error may be somewhat
forgivable, and the final choice where a rectangle is simply not an appropriate approxima-
tion at all. We show these choices in Fig. 5.11.

Figure 5.11: Rectangular Approximations of Folium Curves with Parameters a = 0.1, b = 0.4 (left), a = 0.3, b =
0.4 (right), and a = 0.5, b = 0.4 (bottom)

To quantify the strength of the approximations depicted in Fig. 5.11 we ran trials and
recorded the risk values. As we can see in Fig. 5.12, the folium corresponding to a small
convex shape is well approximated by a rectangle as the average risk is roughly 0.02 and the
variance is small. As we strech the folium into a more complex curve, the approximation
weakens. For choices a = 0.3, b = 0.4, the loop itself is clearly not approximated well by a
rectangle, but the rectangles area is small enough that its error is still not egregious with an
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average risk of roughly 0.145. Once the folium is both not at all convex and large relative to
the learning space, approximation fails, obtaining less than 50% accuracy.

Figure 5.12: Risk Values of Folium Curves Depicted in Fig. 5.11

5.4 Grid Classifiers

As we saw previously, rectangular classifiers are not particularly strong in general, but they
are still useful to us in that they lay the foundation for grid classifiers. Suppose for instance,
that we add cells to the rectangular approximations in Fig. 5.11. Doing so yields unassigned
grid matrices and as we can see in Fig. 5.13, if the cells of our matrices are small enough, it is
reasonable to suspect that grid learners will obtain strong approximations of arbitrary loops
with sufficiently large samples. Indeed, after training on the samples in Fig. 5.13, we obtain
results that are quite promising (see Fig. 5.14).
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Figure 5.13: Grid Matrix Visualization for Folium(0.1, 0.4) [left], Folium(0.3, 0.4) [right], Folium(0.5, 0.4)
[bottom]
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Figure 5.14: True Labels (Left) and Model Labels (Right) After Training

5.5 Conclusion

The reader may be left with a few very reasonable questions. 1) Do gird classifiers still per-
form well if we decrease the sample size? That is, the samples in Fig. 5.13 are large enough
that we have densely filled the entire learning space. In practice, we may not have access
to such a rich sample. 2) Thus far, our analysis of the performance of grid classifiers has
been limited to three different labeling functions. What about other loops? 3) The family
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FGrid seems to be arbitrarily expressive. How is it that such a rich family of hypotheses is
able to avoid overfitting? Formally, do grid classifiers have a finite VC dimension? 4) Can
we extend grid classifiers to other learning settings, such those in higher dimensions, non-
uniformly distributed data, or multiclass classification?

We can immediately give empirical answers to questions 1) and 2). Namely, we can create
heat maps that show how grid classifiers perform on many different parameterizations of
folium curves where each heat map is generated using a unique sample size.

Figure 5.15: Grid Classifier Risk Maps

Notice that even with a sample as small as 300we seem to be consistently hitting≥ 90%

accuracy. Moreover, this holds over a wide variety of different folium curves, implying that
grid classifiers have the potential to be very robust. Of course, this is all empirical and we
are only testing grid classifiers on data whose marginal distribution is uniform over the
learning space—which brings us to questions 3) and 4).
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5.5.1 The VCDimension of Grid Classifiers

The VC dimension ofFGrid is infinite, but we do not run an ERM algorithm onFGrid di-
rectly. Rather, we first pick a border, and then a number of cells. Hence, the real question
that we should be asking is whether a hypothesis classHB,n of some fixed border and num-
ber of cells has a finite VC dimension. Clearly, if we have n divisions along the border, then
there are n2 cells. Each of those cells can classify an instance as either positive or negative.
Thus,HB,n shatters sets of size |C| = n2. By default, every instance outside of the grid
is, and always will be, labeled negatively. Thus, we cannot shatter sets with size |C| > n2,
implying V C(HB,n) < ∞.
Does this imply grid classifiers are agnostic learners? It is not clear. We are hesitant to

say yes. Estimating the border is achieved by searching through the space of axis-aligned
rectangles, which is a provably realizable class10. The issue is that axis-aligned rectangles,
though similar to what we are calling borders is slightly different. Namely, it is assumed in
the proof that the true labeling function is an axis-aligned rectangle.

Still, there is hope that searching for a border can be done with arbitrarily strong preci-
sion. Assuming that we can indeed get a realizable border, that is a border that perfectly
captures the extreme points of the loop, all that remains is to make arguments about whether
estimating the appropriate number of cells is agnostically learnable. If we can show that
border estimate and determining cell numbers is agnostically learnable, then yes, grid classi-
fiers are agnostic classifiers, and quite powerful ones at that.

Grid classifiers are dynamic. That is, we have choice as to how expressive we wish to
make grid classifiers by picking a larger or smaller number of cells. This seems a lot like a
realizable learner, but there is a catch. In order to get arbitrarily fine approximations, we
need to have abtirarily many cells. Clearly, if we let n → ∞ thenHB,n no longer has a
finite VC dimension.

5.5.2 Higher Dimensions, NonuniformData, andMulticlass Classification,
OhMy!

My hat is tipped to those that got theWizard of Oz reference. Back to learning theory. An-
swering question 4) is a bit trickier than questions 1) through 3). We begin with higher
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dimensions. The idea of grid classifiers is inspired by measure theory8. In measure theory,
we cover sets on the real line with collections of intervals and this idea is readily extended to
n dimensional space. So while we probably can extend grid learners to higher dimensions
in theory, in practice we will run into memory problems. The grid matrix requiresO(nd)

space where d is the dimension of the learning space and n is the number of divisions along
each dimension.

It is not clear whether grid classifiers are robust enough to handle data whose marginal
distribution is nonuniform over the learning space. One might hope that we can gimmick
our way around nonuniform data. That is, if there exists pockets of space in which the
data is unlikely to be sampled, then perhaps we do not mind mislabeling those pockets.
Whether this thinking actually works is not something we have determined, but we suspect
it is subject to failure when we allow for unbounded learning spaces. Why? If the learning
space is unbounded, then there might be distributions with infinitely many “pockets” that
are unlikely to be sampled individually, but as a whole make up a significant portion of the
marginal distribution.

The final question is that of multiclass classification. Notice that folium curves are gen-
erally comprised of multiple loops. That is, folium curves generally do not obey Defini-
tion 2.2 (single loops), yet grid classifiers did not have any problem learning the structure of
a folium curve. Imagine that we took one of the pedals of the folium curve and assigned it
a new class so that our labels are no longer binary. In this case, cells would be assigned such
that the label of the cell is given by the instance that is most frequently populated in the
cell. In this way, grid classifiers may be able to learn multiclass data, but we remain skeptical
about how well this idea might generalize.
Multiclass learning is considerably more difficult than binary learning and has only re-

cently seen major theoretical breakthroughs1,3. Moreover, the breakthroughs in multiclass
learning use transductive learning4 and it is still unknown whether transductive learning
is substantially harder than PAC learning in the agnostic setting. Hence, though we are ex-
cited about the potential of grid classifiers, we suspect that a more rigorous analysis would
lead to theoretical shortcomings. This leaves us with one of the major questions we wished
to explore in this thesis. To what degree is a theoretical limitation meaningful in practice?

Through grid classifiers we have constructed a nonlinear classifier that shows promising
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potential to learn one of the major categories in our partition of nonlinear classification.
And yes, while we do suspect that there exist some distributions for which grid learners
might fail, is that necessarily reason enough to discard them entirely? Maybe. Maybe not.
Suppose that in theory there exists distributions that cause grid classifiers to fail. Do said
theoretically challenging distributions exist frequently enough out in the wild for practi-
tioners to care about their existence? If they are frequent, then we are back to square one.
If they are not, we have made progress. In the future, we hope to collaborate with applied
scientists and begin to answer these questions. For now, we conclude what has been a long,
long expedition through learning theoretic ideas. Thank you for your time, and in case I do
not see you, good afternoon, good evening, and good night.
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